Pregunta
The equation of a hyperbola is given by
.
Write down the equation of the new function that is lormed when
is transformed as follows:
Write down the equation of the new function that is lormed when
Ask by Savage Vega. in South Africa
Jan 03,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Here are the equations after each transformation:
-
Shift two units to the left:
-
Shift 3 units up:
-
Shift 1 unit right and 2 units down:
-
New hyperbola with asymptotes at
and :
Solución
Let’s analyze the transformations applied to the original hyperbola
.
Understanding the Original Function
- Vertical Asymptote:
- Horizontal Asymptote:
Transformation Rules
-
Horizontal Shifts: To shift the graph horizontally, replace
with : -
shifts right by units. -
shifts left by units.
-
-
Vertical Shifts: To shift the graph vertically, add or subtract a constant:
-
shifts up by units. -
shifts down by units.
-
Now, let’s apply these transformations step-by-step.
3.1 Shift Two Units to the Left
Transformation: Replace
with
.
Equation of the New Function:
3.2 Shift 3 Units Up
Transformation: Add 3 to the original function.
Equation of the New Function:
3.3 Shift 1 Unit Right and 2 Units Down
Transformation:
- Shift right by replacing
with . - Shift down by subtracting 2.
Equation of the New Function:
3.4 New Hyperbola with Asymptotes at
and
Transformation:
- To set the vertical asymptote to
, replace with . - To set the horizontal asymptote to
, set the vertical shift to .
Using the same coefficient
as in the original function:
Equation of the New Function:
Summary of All Transformations
3.1. Shift two units to the left:
3.2. Shift 3 units up:
3.3. Shift 1 unit right and 2 units down:
3.4. New hyperbola with asymptotes at
and
:
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find the equations for the transformed hyperbola under the given conditions, we start with the original function
.
-
Shift two units to the left: This means substituting
with . The new function becomes: -
Shift 3 units up: We add 3 to the entire function:
-
Shift 1 unit right and 2 units down: First, we shift right (substituting
with ), then we subtract 2: -
New asymptotes at
and : The general form of a hyperbola is . To shift the vertical asymptote to , we set :
Putting all transformations together, the final equation of the new hyperbola is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium