Pregunta
upstudy study bank question image url

The equation of a hyperbola is given by .
Write down the equation of the new function that is lormed when is transformed as follows:

Ask by Savage Vega. in South Africa
Jan 03,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the equations after each transformation:
  1. Shift two units to the left:
  2. Shift 3 units up:
  3. Shift 1 unit right and 2 units down:
  4. New hyperbola with asymptotes at and :

Solución

Let’s analyze the transformations applied to the original hyperbola .

Understanding the Original Function

  • Vertical Asymptote:
  • Horizontal Asymptote:

Transformation Rules

  1. Horizontal Shifts: To shift the graph horizontally, replace with :
    • shifts right by units.
    • shifts left by units.
  2. Vertical Shifts: To shift the graph vertically, add or subtract a constant:
    • shifts up by units.
    • shifts down by units.
Now, let’s apply these transformations step-by-step.

3.1 Shift Two Units to the Left

Transformation: Replace with .
Equation of the New Function:

3.2 Shift 3 Units Up

Transformation: Add 3 to the original function.
Equation of the New Function:

3.3 Shift 1 Unit Right and 2 Units Down

Transformation:
  • Shift right by replacing with .
  • Shift down by subtracting 2.
Equation of the New Function:

3.4 New Hyperbola with Asymptotes at and

Transformation:
  • To set the vertical asymptote to , replace with .
  • To set the horizontal asymptote to , set the vertical shift to .
Using the same coefficient as in the original function:
Equation of the New Function:

Summary of All Transformations

3.1. Shift two units to the left:
3.2. Shift 3 units up:
3.3. Shift 1 unit right and 2 units down:
3.4. New hyperbola with asymptotes at and :

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equations for the transformed hyperbola under the given conditions, we start with the original function .
  1. Shift two units to the left: This means substituting with . The new function becomes:
  2. Shift 3 units up: We add 3 to the entire function:
  3. Shift 1 unit right and 2 units down: First, we shift right (substituting with ), then we subtract 2:
  4. New asymptotes at and : The general form of a hyperbola is . To shift the vertical asymptote to , we set :
Putting all transformations together, the final equation of the new hyperbola is:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad