Pregunta
\( 7 \quad 3 x-5<5 x-3 \) [WAEC]
Ask by Montgomery Gough. in Nigeria
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x > -1 \)
Solución
To solve the inequality \( 3x - 5 < 5x - 3 \), follow these steps:
1. **Subtract \(3x\) from both sides** to get the variable terms on one side:
\[
3x - 5 - 3x < 5x - 3 - 3x
\]
Simplifying:
\[
-5 < 2x - 3
\]
2. **Add 3 to both sides** to isolate the term with \(x\):
\[
-5 + 3 < 2x - 3 + 3
\]
Simplifying:
\[
-2 < 2x
\]
3. **Divide both sides by 2** to solve for \(x\):
\[
\frac{-2}{2} < x
\]
Simplifying:
\[
-1 < x
\]
Or equivalently:
\[
x > -1
\]
**Solution:**
\( x > -1 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the inequality \( 3x - 5 < 5x - 3 \), start by getting all the \( x \) terms on one side. Subtract \( 3x \) from both sides, giving you \( -5 < 2x - 3 \). Next, add \( 3 \) to both sides to isolate the term with \( x \): \( -2 < 2x \). Now, divide both sides by \( 2 \), which results in \( -1 < x \) or in a more common form, \( x > -1 \). This means that any number greater than \(-1\) is a solution to the inequality, so feel free to plug in some numbers greater than \(-1\) to see if they satisfy the inequality!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium