Pregunta
upstudy study bank question image url

You invest \( \$ 800 \) at an annual rate of \( 8 \% \) for 12 years. How much more interest would you earn with compound interest than with simple interest for (a) the whole 12 years; and (b) in just year 7 by itself?

Ask by Welch Little. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Over 12 years, you earn \$445 more with compound interest. In year 7, you earn \$38 more with compound interest.

Solución

To determine the difference in interest earned using **compound interest** versus **simple interest**, we'll analyze both scenarios: - **Principal (P):** \$800 - **Annual Interest Rate (r):** 8% or 0.08 - **Time (t):** 12 years ### (a) Difference Over the Whole 12 Years 1. **Simple Interest (Iₛ):** \[ Iₛ = P \times r \times t = 800 \times 0.08 \times 12 = \$768 \] 2. **Compound Interest (I𝚌):** - **Amount (A):** \[ A = P \times (1 + r)^t = 800 \times (1.08)^{12} \] - Calculate \((1.08)^{12}\): \[ (1.08)^{12} \approx 2.5161 \] - **Total Amount (A):** \[ A \approx 800 \times 2.5161 = \$2,012.88 \] - **Interest Earned (I𝚌):** \[ I𝚌 = A - P = 2,012.88 - 800 = \$1,212.88 \] 3. **Difference (I𝚌 - Iₛ):** \[ 1,212.88 - 768 = \$444.88 \] **Rounded to the nearest dollar:** **\$445** more with compound interest over 12 years. --- ### (b) Difference in Just Year 7 1. **Simple Interest for Year 7 (Iₛ₇):** \[ Iₛ₇ = P \times r = 800 \times 0.08 = \$64 \] 2. **Compound Interest for Year 7 (I𝚌₇):** - **Amount at Beginning of Year 7:** \[ A₆ = P \times (1 + r)^6 = 800 \times (1.08)^6 \approx 800 \times 1.5869 = \$1,269.52 \] - **Interest Earned in Year 7:** \[ I𝚌₇ = A₆ \times r = 1,269.52 \times 0.08 \approx \$101.56 \] 3. **Difference (I𝚌₇ - Iₛ₇):** \[ 101.56 - 64 = \$37.56 \] **Rounded to the nearest dollar:** **\$38** more with compound interest in year 7. --- ### **Summary** - **(a)** Over **12 years**, compound interest earns **\$445** more than simple interest. - **(b)** In **year 7**, compound interest earns **\$38** more than simple interest.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out how much more interest you would earn with compound interest compared to simple interest, let’s calculate both types of interest. 1. **Simple Interest**: The formula for simple interest is \( I = P \cdot r \cdot t \), where \( P \) is the principal amount, \( r \) is the annual interest rate, and \( t \) is the time in years. \[ I = 800 \cdot 0.08 \cdot 12 = 800 \cdot 0.96 = 768 \] So, the total simple interest earned over 12 years is \( \$ 768 \). 2. **Compound Interest**: The formula for compound interest is \( A = P(1 + r)^t \), where \( A \) is the amount of money accumulated after n years, including interest. \[ A = 800(1 + 0.08)^{12} \approx 800(2.51817) \approx 2014.54 \] The total compound interest earned is \( A - P = 2014.54 - 800 \approx 1214.54 \). Now, let's calculate the difference in interest earned: \[ \text{Difference} = 1214.54 - 768 = 446.54 \] So, you would earn **about \( \$ 446.54 \)** more with compound interest than with simple interest over the entire 12 years. **(b)** To find the interest earned in just year 7 with compound interest, we can calculate the total amount at the end of year 6, then find the amount at the end of year 7, and subtract the two: \[ A_{6} = 800(1 + 0.08)^{6} \approx 800(1.58687) \approx 1269.50 \] \[ A_{7} = 800(1 + 0.08)^{7} \approx 800(1.71382) \approx 1371.06 \] The interest earned during year 7 is: \[ I_{7} = A_{7} - A_{6} = 1371.06 - 1269.50 \approx 101.56 \] For simple interest during year 7, it is the same as each year: \[ I_{7, \text{simple}} = 800 \cdot 0.08 = 64 \] The difference in interest for year 7: \[ \text{Difference}_{7} = 101.56 - 64 \approx 37.56 \] Thus, you would earn **about \( \$ 37.56 \)** more with compound interest than with simple interest in just year 7.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad