Pregunta
Evaluate and simplify the expression when \( x=2 \) and \( y=1 \). \( \frac{2 x-y}{x+y}=[?] \)
Ask by Hodgson Valdez. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
When \( x = 2 \) and \( y = 1 \), the expression \(\frac{2x - y}{x + y}\) simplifies to \(1\).
Solución
To evaluate and simplify the expression \(\frac{2x - y}{x + y}\) when \(x = 2\) and \(y = 1\), follow these steps:
1. **Substitute the given values into the expression:**
\[
\frac{2(2) - 1}{2 + 1}
\]
2. **Perform the calculations in the numerator and the denominator:**
- **Numerator:** \(2 \times 2 = 4\), then \(4 - 1 = 3\)
- **Denominator:** \(2 + 1 = 3\)
3. **Rewrite the expression with the calculated values:**
\[
\frac{3}{3}
\]
4. **Simplify the fraction:**
\[
\frac{3}{3} = 1
\]
**Final Answer:** \(1\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To evaluate the expression \( \frac{2x - y}{x + y} \) when \( x = 2 \) and \( y = 1 \), we substitute the values into the expression: \[ \frac{2(2) - 1}{2 + 1} = \frac{4 - 1}{3} = \frac{3}{3} = 1 \] So, the simplified expression is \( 1 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium