Pregunta
Solve the rational equation: \( 1-\frac{6}{x}=-\frac{8}{x^{2}} \) \( x=\square \)
Ask by Washington Bush. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 2 \) or \( x = 4 \)
Solución
To solve the rational equation:
\[
1 - \frac{6}{x} = -\frac{8}{x^{2}}
\]
**Step 1: Eliminate the Denominators**
Multiply both sides of the equation by \( x^{2} \) to eliminate the denominators:
\[
x^{2} \left(1 - \frac{6}{x}\right) = x^{2} \left(-\frac{8}{x^{2}}\right)
\]
Simplify both sides:
\[
x^{2} - 6x = -8
\]
**Step 2: Bring All Terms to One Side**
Move all terms to the left side to set the equation to zero:
\[
x^{2} - 6x + 8 = 0
\]
**Step 3: Solve the Quadratic Equation**
Factor the quadratic equation:
\[
x^{2} - 6x + 8 = (x - 2)(x - 4) = 0
\]
Set each factor equal to zero:
\[
x - 2 = 0 \quad \text{or} \quad x - 4 = 0
\]
So, the solutions are:
\[
x = 2 \quad \text{and} \quad x = 4
\]
**Step 4: Verify the Solutions**
Ensure that neither solution makes any denominator in the original equation zero. Since \( x = 2 \) and \( x = 4 \) are both non-zero, they are valid solutions.
**Final Answer:**
\[
x = 2 \quad \text{or} \quad x = 4
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the equation \( 1-\frac{6}{x}=-\frac{8}{x^{2}} \), first eliminate the fractions by multiplying all terms by \( x^2 \) (assuming \( x \neq 0 \)): \[ x^2 \cdot 1 - x^2 \cdot \frac{6}{x} = x^2 \cdot -\frac{8}{x^2} \] This simplifies to: \[ x^2 - 6x = -8 \] Now, rearranging gives: \[ x^2 - 6x + 8 = 0 \] Next, we can factor this quadratic equation: \[ (x - 2)(x - 4) = 0 \] Thus, the solutions for \( x \) are: \[ x = 2 \quad \text{or} \quad x = 4 \] So, the final answer is: \( x=2 \) or \( x=4 \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium