Pregunta
upstudy study bank question image url

Sean and Colleen are raking leaves in their yard. Working fogether, they can clear the yard of leaves in 24 minutes. Work. 20 minutes longer to clear the yard than it would take Colleen working alone. When \( c \) is the number of minutes it would take Colleen to finish the job when working alone, the situation is modeled by th \( \frac{1}{c}+\frac{1}{c+20}=\frac{1}{24} \). How long would it take Colleen alone to clear the yard of leaves? A. 12 minutes B. 14 minutes C. 28 minutes D. 40 minutes

Ask by Colon Paul. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It would take Colleen 40 minutes alone to clear the yard of leaves. **Answer:** D. 40 minutes

Solución

To determine how long it would take Colleen to clear the yard of leaves alone, let's analyze the given information and solve the equation step by step. **Given:** - Colleen's time alone: \( c \) minutes. - Sean takes 20 minutes longer than Colleen: \( c + 20 \) minutes. - Working together, they clear the yard in 24 minutes. **Modeling the Rates:** - **Colleen's rate:** \( \frac{1}{c} \) (yards per minute). - **Sean's rate:** \( \frac{1}{c + 20} \) (yards per minute). - **Combined rate:** \( \frac{1}{24} \) (yards per minute). The relationship between their rates is: \[ \frac{1}{c} + \frac{1}{c + 20} = \frac{1}{24} \] **Solving the Equation:** 1. **Multiply both sides by \( 24c(c + 20) \)** to eliminate the denominators: \[ 24(c + 20) + 24c = c(c + 20) \] 2. **Expand and simplify:** \[ 24c + 480 + 24c = c^2 + 20c \] \[ 48c + 480 = c^2 + 20c \] 3. **Rearrange all terms to one side to form a quadratic equation:** \[ c^2 - 28c - 480 = 0 \] 4. **Solve the quadratic equation using the quadratic formula:** \[ c = \frac{28 \pm \sqrt{28^2 + 4 \times 480}}{2} \] \[ c = \frac{28 \pm \sqrt{784 + 1920}}{2} \] \[ c = \frac{28 \pm \sqrt{2704}}{2} \] \[ c = \frac{28 \pm 52}{2} \] We discard the negative solution because time cannot be negative: \[ c = \frac{28 + 52}{2} = 40 \text{ minutes} \] **Answer:** **D. 40 minutes**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( \frac{1}{c}+\frac{1}{c+20}=\frac{1}{24} \), we will combine the fractions on the left side. To do this, find a common denominator: 1. The common denominator is \( c(c + 20) \), so we rewrite the equation as \( \frac{(c + 20) + c}{c(c + 20)} = \frac{1}{24} \). 2. This simplifies to \( \frac{2c + 20}{c(c + 20)} = \frac{1}{24} \). 3. Cross-multiplying gives us: \( 24(2c + 20) = c(c + 20) \). 4. Expanding both sides yields: \( 48c + 480 = c^2 + 20c \). 5. Rearranging the equation leads to \( c^2 - 28c - 480 = 0 \). Now, we can factor or use the quadratic formula to find \( c \). The factors are \( (c - 40)(c + 12) = 0 \). This gives us two solutions: \( c = 40 \) or \( c = -12 \). Since time cannot be negative, Colleen would take 40 minutes alone to clear the yard of leaves. So, the answer is **D. 40 minutes**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad