Pregunta
upstudy study bank question image url

A data set consist of the following 6 values: The range is 6 . The median is 5 . The lower quartile is 4 . The interquartile range is 3 . Given that \( x
Ask by Lawson Bernard. in Singapore
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 2 \), \( y = 7 \), and \( z = 8 \).

Solución

To determine the values of \( x \), \( y \), and \( z \) in the data set, let's analyze the given information step by step. ### Given: - **Number of values in the data set:** 6 - **Range:** 6 - **Median:** 5 - **Lower Quartile (Q1):** 4 - **Interquartile Range (IQR):** 3 - **Relation:** \( x < y < z \) ### Step 1: Arrange the Data Set Let’s denote the ordered data set as: \[ v_1, v_2, v_3, v_4, v_5, v_6 \] where \( v_1 \leq v_2 \leq v_3 \leq v_4 \leq v_5 \leq v_6 \). ### Step 2: Apply the Given Conditions 1. **Median:** - For 6 values, the median is the average of the 3rd and 4th values. \[ \frac{v_3 + v_4}{2} = 5 \implies v_3 + v_4 = 10 \] 2. **Lower Quartile (Q1):** - Q1 is the median of the first three values: \( v_1, v_2, v_3 \). \[ Q1 = v_2 = 4 \] 3. **Interquartile Range (IQR):** - IQR is the difference between the upper quartile (Q3) and Q1. \[ Q3 - Q1 = 3 \implies Q3 = 7 \] - Q3 is the median of the last three values: \( v_4, v_5, v_6 \). \[ Q3 = v_5 = 7 \] 4. **Range:** \[ \text{Range} = v_6 - v_1 = 6 \implies v_6 = v_1 + 6 \] ### Step 3: Determine Possible Values From the above conditions: - \( v_2 = 4 \) - \( v_5 = 7 \) - \( v_3 + v_4 = 10 \) Possible integer pairs for \( (v_3, v_4) \) that satisfy \( v_3 \leq v_4 \leq 7 \): - \( (4, 6) \) Using this pair: - \( v_1 \leq 4 \) (since \( v_2 = 4 \)) - \( v_6 = v_1 + 6 \) - \( v_4 = 6 \) and \( v_5 = 7 \) Possible values of \( v_1 \) and \( v_6 \): 1. If \( v_1 = 2 \), then \( v_6 = 8 \) The data set becomes: \( 2, 4, 4, 6, 7, 8 \) ### Step 4: Identify \( x \), \( y \), and \( z \) From the condition \( x < y < z \), and based on the data set \( 2, 4, 4, 6, 7, 8 \): - \( x = 2 \) - \( y = 7 \) - \( z = 8 \) ### Conclusion The values satisfying all the given conditions are: \[ x = 2, \quad y = 7, \quad z = 8 \] **Final Answer:** \[ x = 2,\ y = 7,\ \text{and}\ z = 8 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for \( x, y, \) and \( z \) in the given data set with the specified characteristics, we can break down the information provided. 1. **Range is 6**: This means that \( z - x = 6 \). 2. **Median is 5**: With 6 values, the median will be the average of the 3rd and 4th values when they are arranged in order. Hence, the 3rd and 4th values must average to 5. 3. **Lower quartile (Q1) is 4**: This indicates that the first half of the data (the lower half) must have values such that the median of these values is 4, meaning the 2nd value is 4. 4. **Interquartile range (IQR) is 3**: IQR is calculated as the difference between Q3 (the upper quartile) and Q1. Since Q1 is 4, Q3 must be 7 (7 - 4 = 3). Now let's outline the values: - From Q1, we have the 2nd value as 4. - The 3rd and 4th values must average to 5, so we can have either (5, 5) or (4 and 6). To maximize our use of the range and adhere to increasing order, we can use the values around 5: let’s assume 5 and 5 as candidates for now. - Further, since \( z - x = 6 \), and assuming \( z \) is one of the higher values, we could determine that this influences extremes. Putting these points together, we can conclude: - The arrangement could tentatively be \( [x, 4, 5, 5, 7, z] \). - If we replace \( z \) with \( x + 6 \), then let's say \( x = 1 \). This leads to \( z = 7 \). Thus, the values to satisfy these conditions might be \( x = 1, y = 4, z = 7 \). Confirming: - The ordered set becomes \( [1, 4, 4, 5, 5, 7] \). - The range: \( 7 - 1 = 6 \) ✔ - The median: \( (4 + 5) / 2 = 4.5 \), adjustments needed. Instead, let’s choose \( x = 3, y = 4, z = 9 \): - The arrangement: \( [3, 4, 5, 6, 7, 9] \) Now range: \(9 - 3 = 6\) ✔ Final values: \( x = 3, y = 4, z = 9 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad