11. \( p^{2}-72+p \) 13. \( x^{2}-x-20 \) 15. \( -x^{2}-2 x+63 \) Compiled by: Motsoeneng L.S
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To factor \( p^{2}-72+p \), you can rearrange it to \( p^{2}+p-72 \). You’re looking for two numbers that multiply to \(-72\) and add to \(1\); these are \(9\) and \(-8\). Thus, it factors to \((p+9)(p-8)\). For \( x^{2}-x-20 \), you want two numbers that multiply to \(-20\) and add to \(-1\); these are \(-5\) and \(4\). Therefore, the factorization is \((x-5)(x+4)\), giving you clear paths to find the roots directly! Now, let’s tackle \(-x^{2}-2x+63\). First, it can be rewritten as \(-1(x^{2}+2x-63)\). Looking for numbers that multiply to \(-63\) and sum to \(2\), we find \(9\) and \(-7\), leading to \(-1(x-7)(x+9)\) as the factored form. Always double-check by expanding to ensure your factors yield the original expression! Happy factoring!