\( ( x ^ { 3 } + y ^ { 3 } ) d x = ( x ^ { 2 } y + x y ^ { 2 } ) d y \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
This equation can be interpreted as a differential form that can potentially be simplified or solved using techniques from calculus. To make progress, observe that this is a homogeneous equation. Both sides can be manipulated to isolate \( dy/dx \) by rearranging: \[ \frac{dy}{dx} = \frac{x^3 + y^3}{x^2y + xy^2} \] Solving this could involve substitution or recognizing patterns, such as using polar coordinates. One interesting approach is to consider the symmetry of the equation. Notice that if you switch \( x \) and \( y \), the equation remains structurally similar. This symmetry can hint towards possible solutions, allowing us to look for answers in simple forms like \( y = kx \), where \( k \) is a constant. This thought experiment can often yield elegant solutions. Happy solving!