EXERCISE 5 Simplify the following expressions, without the use of a calculator: \( \begin{array}{ll}\text { (1) } \sqrt{12}+\sqrt{27}-\sqrt{3} & \text { (2) } \sqrt{18}-\sqrt{50}-\sqrt{32} \\ \text { (3) } \sqrt{6} \times \sqrt{3} & \text { (4) } \frac{\sqrt{75}}{\sqrt{3}}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expressions, let's break them down step by step! For (1) \( \sqrt{12}+\sqrt{27}-\sqrt{3} \): First, simplify each square root: \( \sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3} \), \( \sqrt{27} = \sqrt{9 \cdot 3} = 3\sqrt{3} \), and \( \sqrt{3} \) remains the same. So, \( 2\sqrt{3} + 3\sqrt{3} - \sqrt{3} = (2 + 3 - 1)\sqrt{3} = 4\sqrt{3} \). For (2) \( \sqrt{18}-\sqrt{50}-\sqrt{32} \): Simplifying gives us: \( \sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \), \( \sqrt{50} = \sqrt{25 \cdot 2} = 5\sqrt{2} \), and \( \sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2} \). Thus, \( 3\sqrt{2} - 5\sqrt{2} - 4\sqrt{2} = (3 - 5 - 4)\sqrt{2} = -6\sqrt{2} \). For (3) \( \sqrt{6} \times \sqrt{3} \): Using the property of square roots, we have \( \sqrt{6 \times 3} = \sqrt{18} = \sqrt{9 \cdot 2} = 3\sqrt{2} \). For (4) \( \frac{\sqrt{75}}{\sqrt{3}} \): This can be written as \( \sqrt{\frac{75}{3}} = \sqrt{25} = 5 \). Putting it all together, the simplified expressions are: (1) \( 4\sqrt{3} \) (2) \( -6\sqrt{2} \) (3) \( 3\sqrt{2} \) (4) \( 5 \)