Pregunta
upstudy study bank question image url

Find the solution to the system by the substitution method. Check your answer. \[ \begin{array}{ll}-x+3 y=-17 & \text { (1) } \\ 4 x-y=24 & \text { (2) }\end{array} \]

Ask by Fuentes Lyons. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = 5 \) and \( y = -4 \).

Solución

Certainly! Let's solve the given system of equations using the **substitution method** and then verify the solution. \[ \begin{cases} -\,x + 3y = -17 \quad \text{(1)} \\ 4x - y = 24 \quad \text{(2)} \end{cases} \] ### Step 1: Solve one equation for one variable Let's solve **Equation (1)** for \( x \): \[ -\,x + 3y = -17 \] Add \( x \) to both sides: \[ 3y = x - 17 \] Now, solve for \( x \): \[ x = 3y + 17 \quad \text{(3)} \] ### Step 2: Substitute into the other equation Now, substitute \( x = 3y + 17 \) from **Equation (3)** into **Equation (2)**: \[ 4x - y = 24 \] Substituting: \[ 4(3y + 17) - y = 24 \] Expand the multiplication: \[ 12y + 68 - y = 24 \] Combine like terms: \[ 11y + 68 = 24 \] Subtract 68 from both sides: \[ 11y = 24 - 68 \] \[ 11y = -44 \] Divide both sides by 11: \[ y = -4 \] ### Step 3: Find the other variable Now that we have \( y = -4 \), substitute this back into **Equation (3)** to find \( x \): \[ x = 3y + 17 \] \[ x = 3(-4) + 17 \] \[ x = -12 + 17 \] \[ x = 5 \] ### Solution \[ x = 5, \quad y = -4 \] ### Step 4: Check the solution Let's verify the solution by substituting \( x = 5 \) and \( y = -4 \) back into both original equations. **Check in Equation (1):** \[ -\,x + 3y = -17 \] \[ -5 + 3(-4) = -17 \] \[ -5 - 12 = -17 \] \[ -17 = -17 \quad \text{✓} \] **Check in Equation (2):** \[ 4x - y = 24 \] \[ 4(5) - (-4) = 24 \] \[ 20 + 4 = 24 \] \[ 24 = 24 \quad \text{✓} \] Both equations are satisfied, so the solution is correct. ### Final Answer \[ \boxed{\,x = 5,\quad y = -4\,} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations using the substitution method, we start with the equations: 1) \(-x + 3y = -17\) 2) \(4x - y = 24\) Let's isolate \(x\) in equation (1): \(-x = -17 - 3y\) Multiplying everything by -1 gives: \(x = 17 + 3y\) (Equation 3) Next, we substitute Equation 3 into Equation 2: Substituting \(x\) in \(4x - y = 24\): \[ 4(17 + 3y) - y = 24 \] Now, distribute: \[ 68 + 12y - y = 24 \] Combine like terms: \[ 68 + 11y = 24 \] Now, isolate \(y\): \[ 11y = 24 - 68 \] \[ 11y = -44 \] Dividing by 11: \[ y = -4 \] Now that we have \(y\), we'll substitute it back into Equation 3 to find \(x\): \[ x = 17 + 3(-4) \] \[ x = 17 - 12 \] \[ x = 5 \] So, the solution to the system is \(x = 5\) and \(y = -4\). To check our answer, we substitute \(x = 5\) and \(y = -4\) back into the original equations: For equation (1): \[-(5) + 3(-4) = -5 - 12 = -17\] (True) For equation (2): \[4(5) - (-4) = 20 + 4 = 24\] (True) Both equations are satisfied, so our solution is confirmed: **\(x = 5, y = -4\)**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad