Pregunta
upstudy study bank question image url

EE. 3 Find probabilities using the normal distribution I SSW \( X \) is a normally distributed random variable with mean 25 and standard deviation 2 . What is the probability that \( X \) is greater than 23 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Best Beck. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is greater than 23 is **0.840**.

Solución

To determine the probability that \( X \) is greater than 23 using the **68-95-99.7 rule** (also known as the empirical rule), follow these steps: ### Given: - Mean (\( \mu \)) = 25 - Standard Deviation (\( \sigma \)) = 2 - We need to find \( P(X > 23) \) ### Steps: 1. **Identify the Z-Score:** - \( 23 \) is \( 1 \sigma \) below the mean. - \( 23 = \mu - 1\sigma = 25 - 2 = 23 \) 2. **Apply the 68-95-99.7 Rule:** - **68%** of the data lies within \( \mu \pm 1\sigma \), which is between 23 and 27. - This means that **16%** of the data lies below 23 (since \( 100\% - 68\% = 32\% \) and half of that is below 23). - Therefore, the probability that \( X \) is greater than 23 is: \[ P(X > 23) = 1 - P(X < 23) = 1 - 0.16 = 0.84 \] ### Final Answer: The probability that \( X \) is greater than 23 is **0.840** (rounded to the nearest thousandth). **Answer:** The probability that \( X \) is greater than 23 is **0.840**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that \( X \) is greater than 23 when \( X \) is normally distributed with a mean (\( \mu \)) of 25 and a standard deviation (\( \sigma \)) of 2, you can utilize the empirical rule, also known as the \( 0.68-0.95-0.997 \) rule. First, calculate how many standard deviations away 23 is from the mean. The calculation is: \[ Z = \frac{X - \mu}{\sigma} = \frac{23 - 25}{2} = -1 \] According to the empirical rule, approximately 68% of the data falls within 1 standard deviation of the mean. Since \( X \) is greater than 23 (which is one standard deviation below the mean), we need to find the area to the right of \( Z = -1 \). This means that 50% (the mean) plus half of 68% (34%) will give us the area to the right: \[ P(X > 23) = 0.5 + 0.34 = 0.84 \] So the final answer is approximately **0.840** when rounded to the nearest thousandth.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad