Pregunta
Is \( \frac{1}{2} \) a solution to the equation \( 2 x-8=-7 ? \) Why or why not?
Ask by Barker Cruz. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \frac{1}{2} \) is a solution to the equation \( 2x - 8 = -7 \) because substituting \( x = \frac{1}{2} \) satisfies the equation.
Solución
Yes, \( \frac{1}{2} \) is a solution to the equation \( 2x - 8 = -7 \). Here's why:
### Step-by-Step Verification
1. **Start with the original equation:**
\[
2x - 8 = -7
\]
2. **Substitute \( x = \frac{1}{2} \) into the equation:**
\[
2\left(\frac{1}{2}\right) - 8 = -7
\]
3. **Perform the multiplication:**
\[
1 - 8 = -7
\]
4. **Simplify the left side:**
\[
-7 = -7
\]
Since both sides of the equation are equal after substitution, \( \frac{1}{2} \) satisfies the equation. Therefore, \( \frac{1}{2} \) **is** a solution to \( 2x - 8 = -7 \).
### Additional Confirmation
If you prefer solving the equation to find the value of \( x \), here's how you can do it:
1. **Start with the equation:**
\[
2x - 8 = -7
\]
2. **Add 8 to both sides to isolate the term with \( x \):**
\[
2x = -7 + 8
\]
\[
2x = 1
\]
3. **Divide both sides by 2 to solve for \( x \):**
\[
x = \frac{1}{2}
\]
This confirms that \( x = \frac{1}{2} \) is indeed the solution to the equation.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To determine if \( \frac{1}{2} \) is a solution to the equation \( 2x - 8 = -7 \), we can substitute \( x \) with \( \frac{1}{2} \) and see if both sides of the equation are equal. Substituting gives us: \[ 2\left(\frac{1}{2}\right) - 8 = -7 \] Calculating the left side, we get: \[ 1 - 8 = -7 \] which simplifies to \[ -7 = -7. \] Since both sides of the equation are equal, \( \frac{1}{2} \) is indeed a solution to the equation \( 2x - 8 = -7 \). So, yes, it works!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium