Evaluate the limit \( \lim _{x \rightarrow \infty} \frac{\sqrt{10+7 x^{2}}}{8+10 x} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To evaluate the limit \[ \lim_{x \to \infty} \frac{\sqrt{10 + 7x^2}}{8 + 10x}, \] we start by simplifying the expression. As \( x \) approaches infinity, the dominant term inside the square root in the numerator and the linear term in the denominator will dictate the behavior of the function. First, let's divide both the numerator and the denominator by \( x \): \[ = \lim_{x \to \infty} \frac{\sqrt{10/x^2 + 7}}{8/x + 10}. \] As \( x \) approaches infinity, \( 10/x^2 \) approaches \( 0 \) and \( 8/x \) also approaches \( 0 \). This simplifies our limit to: \[ = \frac{\sqrt{0 + 7}}{0 + 10} = \frac{\sqrt{7}}{10}. \] Therefore, the limit is \[ \frac{\sqrt{7}}{10}. \]