Pregunta
Identify the restricted values. \[ \frac{-6 t+5}{(7 t-4)(t-9)} \] If there is more than one restricted value, use the "and" button.
Ask by Pearson Chen. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The restricted values are \( t = \frac{4}{7} \) and \( t = 9 \).
Solución
The restricted values occur when the denominator is equal to zero because division by zero is undefined.
Given the expression:
\[
\frac{-6t + 5}{(7t - 4)(t - 9)}
\]
Set each factor in the denominator equal to zero and solve for \( t \):
1. \( 7t - 4 = 0 \)
\[
7t = 4 \quad \Rightarrow \quad t = \frac{4}{7}
\]
2. \( t - 9 = 0 \)
\[
t = 9
\]
Therefore, the restricted values are:
\[
t = \frac{4}{7} \quad \text{and} \quad t = 9
\]
**Answer:** \( t = \dfrac{4}{7} \) and \( t = 9 \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To identify the restricted values of the expression \(\frac{-6t+5}{(7t-4)(t-9)}\), we need to find the values of \(t\) that make the denominator equal to zero, as these values will make the expression undefined. Let's set the denominator to zero: 1. \(7t - 4 = 0\) leads to \(t = \frac{4}{7}\). 2. \(t - 9 = 0\) leads to \(t = 9\). The restricted values are \(t = \frac{4}{7}\) and \(t = 9\). Thus, the restricted values are \(\frac{4}{7} \text{ and } 9\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium