Use a sum or difference formula to find the exact value of the trigonometric function. \( \sin \frac{11 \pi}{12} \) \( \sin \frac{11 \pi}{12}=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( \sin \frac{11 \pi}{12} \), we can rewrite \( \frac{11 \pi}{12} \) as \( \frac{\pi}{3} + \frac{\pi}{4} \), because \( \frac{\pi}{3} = \frac{4 \pi}{12} \) and \( \frac{\pi}{4} = \frac{3 \pi}{12} \). Now, we can use the sine sum formula: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] Letting \( a = \frac{\pi}{3} \) and \( b = \frac{\pi}{4} \), we have: \[ \sin \frac{11\pi}{12} = \sin \left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \sin \frac{\pi}{3} \cos \frac{\pi}{4} + \cos \frac{\pi}{3} \sin \frac{\pi}{4} \] Now substituting the values: \[ \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2}, \quad \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} \] Putting it all together: \[ \sin \frac{11\pi}{12} = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{\sqrt{2}}{2} \] \[ = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \] \[ = \frac{\sqrt{6} + \sqrt{2}}{4} \] Thus, the exact value of \( \sin \frac{11 \pi}{12} \) is: \[ \sin \frac{11 \pi}{12} = \frac{\sqrt{6} + \sqrt{2}}{4} \]