Parents wish to have \( \$ 150,000 \) available for a child's education. If the child is now 7 years old, how much money must be set aside at \( 4 \% \) compounded semiannually to meet their financial goal when the child is 18 ? Click the icon to view some finance formulas. The amount that should be set aside is \( \$ \square \) (Round up to the nearest dollar.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To calculate the amount of money that needs to be set aside to reach \$150,000 when the child is 18 years old, we need to find out how many years of investment there are. From age 7 to age 18 is 11 years. Using the formula for compound interest: \[ FV = PV(1 + \frac{r}{n})^{nt} \] Where: - \(FV\) = future value (\$150,000) - \(PV\) = present value (amount to be determined) - \(r\) = annual interest rate (0.04) - \(n\) = number of times interest is compounded per year (2 for semiannual) - \(t\) = number of years until the money is needed (11 years) Rearranging the equation to solve for \(PV\): \[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \] Substituting in the known values: \[ PV = \frac{150,000}{(1 + \frac{0.04}{2})^{2 \times 11}} \] \[ PV = \frac{150,000}{(1 + 0.02)^{22}} \] \[ PV = \frac{150,000}{(1.02)^{22}} \] Calculating \( (1.02)^{22} \): \[ (1.02)^{22} \approx 1.485947 \] Thus, \[ PV \approx \frac{150,000}{1.485947} \approx 100,812.77 \] Rounding up to the nearest dollar, the amount that should be set aside is \( \$100,813 \).