Pregunta
Find the center and radius of the circle. \[ x^{2}+y^{2}=81 \] center \( (x, y)=( \)
Ask by Schofield Tyler. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The center of the circle is at \((0, 0)\) and the radius is \(9\).
Solución
To find the **center** and **radius** of the circle given by the equation:
\[
x^{2} + y^{2} = 81
\]
we can compare it to the standard form of a circle's equation:
\[
(x - h)^{2} + (y - k)^{2} = r^{2}
\]
where:
- \((h, k)\) is the **center** of the circle.
- \(r\) is the **radius** of the circle.
### Step-by-Step Solution:
1. **Identify the Standard Form Components:**
The given equation is:
\[
x^{2} + y^{2} = 81
\]
This can be rewritten as:
\[
(x - 0)^{2} + (y - 0)^{2} = 9^{2}
\]
Here, it's clear that:
- \(h = 0\)
- \(k = 0\)
- \(r^{2} = 81\) ⇒ \(r = \sqrt{81} = 9\)
2. **Determine the Center and Radius:**
- **Center \((h, k)\):** \((0, 0)\)
- **Radius \(r\):** \(9\)
### **Final Answer:**
- **Center:** \((0, 0)\)
- **Radius:** \(9\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
The equation of the circle you provided is \( x^{2} + y^{2} = 81 \). This is a standard form for a circle centered at the origin, which means that the center of the circle is at \( (0, 0) \). The radius of the circle can be determined by taking the square root of the constant on the right side of the equation, which is \( 81 \). Therefore, the radius is \( \sqrt{81} = 9 \). Center \( (x, y) = (0, 0) \), Radius = 9
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium