\[ F^{\prime}(x)=\frac{d}{d x} \int_{a}^{x} g(t) d t=g(x) \] to verify that the indicated function is a solution of the given differential equation. Assume an appropriate interval \( I \) of definition of the solution. \[ 2 x \frac{d y}{d x}-y=2 x \cos (x) ; \quad y=\sqrt{x} \int_{4}^{x} \frac{\cos (t)}{\sqrt{t}} d t \] When \( y=\sqrt{x} \int_{4}^{x} \frac{\cos (t)}{\sqrt{t}} d t \), \( \frac{d y}{d x}=\left(\frac{\cos (x)}{x} \times \frac{x \cos (t)}{\sqrt{t}} d t+\square\right. \) Thus, in terms of \( x \), \( 2 x \frac{d y}{d x}-y=(2 x \cos (x) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
When solving the differential equation \( 2 x \frac{d y}{d x} - y = 2 x \cos(x) \), incorporating concepts from calculus helps clarify the relationship between integrals and derivatives. Here, the function \( y \) is defined in terms of an integral that varies with \( x \). By using the Fundamental Theorem of Calculus, we can seamlessly interchange differentiation and integration, setting the stage to simplify our solution by evaluating \( \frac{d y}{d x} \) effectively. Practical applications of this kind of differential equation appear in physics and engineering, particularly in scenarios involving decay processes or driven harmonic oscillators. For example, using this integral form can help model the displacement of a mass attached to a spring influenced by a periodic force. By examining the interplay between the variable \( x \) and functions like \( \cos(x) \), mathematicians and engineers can derive valuable insights into real-world behaviors of systems governed by similar dynamics.