Pregunta
upstudy study bank question image url

Question 12 of 15, Step 1 of 1 Andrew deposits a fixed monthly amount into an annuity account for his child's college fund. He wishes to accumulate a future value of \( \$ 85,000 \) in 13 years. Assuming an APR of \( 3.8 \% \) compounded monthly, how much of the \( \$ 85,000 \) will Andrew ultimately deposit in the account, and how much is interest earned? Round your answers to the nearest cent. if necessary. Formulas

Ask by Nichols Hart. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Andrew will deposit approximately \$422.30 each month, totaling \$65,878.80 over 13 years. The interest earned will be \$19,121.20.

Solución

To determine how much Andrew will ultimately deposit in the account and the interest earned, we'll follow these steps: 1. **Identify the Given Information:** - **Future Value (FV):** \$85,000 - **Annual Percentage Rate (APR):** 3.8% compounded monthly - **Time (t):** 13 years 2. **Calculate the Monthly Interest Rate (r):** \[ r = \frac{\text{APR}}{12} = \frac{3.8\%}{12} = 0.0031667 \text{ (monthly rate)} \] 3. **Determine the Total Number of Monthly Payments (n):** \[ n = 13 \text{ years} \times 12 \text{ months/year} = 156 \text{ months} \] 4. **Use the Future Value of an Ordinary Annuity Formula to Find the Monthly Payment (PMT):** \[ \text{FV} = \text{PMT} \times \left( \frac{(1 + r)^n - 1}{r} \right) \] Rearranging to solve for PMT: \[ \text{PMT} = \frac{\text{FV}}{\left( \frac{(1 + r)^n - 1}{r} \right)} \] 5. **Calculate \((1 + r)^n\):** \[ (1 + 0.0031667)^{156} \approx 1.637 \] 6. **Plug the Values Back into the PMT Formula:** \[ \text{PMT} = \frac{85,000}{\left( \frac{1.637 - 1}{0.0031667} \right)} \approx \frac{85,000}{201.205} \approx 422.30 \] So, **Andrew deposits approximately \$422.30 monthly**. 7. **Calculate the Total Deposited Over 13 Years:** \[ \text{Total Deposited} = \text{PMT} \times n = 422.30 \times 156 \approx 65,878.80 \] 8. **Determine the Interest Earned:** \[ \text{Interest Earned} = \text{FV} - \text{Total Deposited} = 85,000 - 65,878.80 = 19,121.20 \] **Final Answers:** - **Total Deposited:** \$65,878.80 - **Interest Earned:** \$19,121.20

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve Andrew's scenario, we can use the future value of an annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( FV \) is the future value, - \( P \) is the amount deposited each month, - \( r \) is the monthly interest rate (annual rate divided by 12), and - \( n \) is the total number of payments (months). Here, we know \( FV = 85,000 \), the APR is \( 3.8\% \) (which gives us a monthly interest rate of \( \frac{0.038}{12} \approx 0.00316667 \)), and \( n = 13 \times 12 = 156 \). 1. Rearranging the formula to find \( P \): \[ P = \frac{FV \times r}{(1 + r)^n - 1} \] Substituting the known values: - \( FV = 85,000 \) - \( r = 0.00316667 \) - \( n = 156 \) Calculating \( P \): \[ P = \frac{85000 \times 0.00316667}{(1 + 0.00316667)^{156} - 1} \] Calculating the denominator: \[ (1 + 0.00316667)^{156} \approx 1.682288 \] So, \[ P \approx \frac{85000 \times 0.00316667}{1.682288 - 1} \approx \frac{269.167}{0.682288} \approx 395.11 \] Thus, Andrew needs to deposit approximately \( P \approx 395.11 \) monthly. 2. To find the total deposited amount: \[ Total\ Deposited = P \times n = 395.11 \times 156 \approx 61,819.16 \] 3. To find the interest earned: \[ Interest\ Earned = Future\ Value - Total\ Deposited = 85,000 - 61,819.16 \approx 23,180.84 \] In conclusion, Andrew will ultimately deposit approximately \( \$ 61,819.16 \) into the account, and he will earn about \( \$ 23,180.84 \) in interest. Now, for some extra context: Did you know that annuities have been a popular choice for long-term savings and investment since the Roman Empire? Back then, people utilized similar principles to secure their financial futures! In today's world, investing through annuities is a favored strategy for parents like Andrew. Many folks use these accounts not just for education savings but also for retirement planning, giving them peace of mind knowing their funds will grow over time.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad