Pregunta
upstudy study bank question image url

\( \int \frac { x ^ { 2 } + 20 } { x ^ { 5 } - 2 x ^ { 2 } + 5 x } d x \)

Ask by Warren Daniel. in Poland
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral can be expressed as \(4 \ln |x| + \int \frac{-4x^3 + 5x^2 + 8}{x^4 - 2x + 5} \, dx + C\), where \(C\) is the constant of integration.

Solución

It seems that the integral I attempted to calculate is not supported directly. Let's break down the integral step by step and see if we can simplify it or find an alternative method to solve it. The integral we want to evaluate is: \[ \int \frac{x^2 + 20}{x^5 - 2x^2 + 5x} \, dx \] ### Step 1: Factor the Denominator First, let's factor the denominator \(x^5 - 2x^2 + 5x\). We can factor out \(x\): \[ x^5 - 2x^2 + 5x = x(x^4 - 2x + 5) \] Now, we need to analyze the polynomial \(x^4 - 2x + 5\) to see if it can be factored further. ### Step 2: Analyze the Polynomial The polynomial \(x^4 - 2x + 5\) does not have real roots (as can be checked using the discriminant or by evaluating it at various points). Therefore, we will keep it as is. ### Step 3: Partial Fraction Decomposition Next, we can use partial fraction decomposition to rewrite the integrand: \[ \frac{x^2 + 20}{x(x^4 - 2x + 5)} = \frac{A}{x} + \frac{Bx^3 + Cx^2 + Dx + E}{x^4 - 2x + 5} \] ### Step 4: Set Up the Equation Multiplying both sides by the denominator \(x(x^4 - 2x + 5)\) gives: \[ x^2 + 20 = A(x^4 - 2x + 5) + (Bx^3 + Cx^2 + Dx + E)x \] ### Step 5: Expand and Collect Like Terms Now we will expand the right-hand side and collect like terms. This will allow us to equate coefficients for \(x^4\), \(x^3\), \(x^2\), \(x\), and the constant term. Let's proceed with this expansion and then solve for \(A\), \(B\), \(C\), \(D\), and \(E\). ### Step 6: Solve for Coefficients After expanding, we will have a system of equations based on the coefficients of \(x\). Let's calculate the coefficients. 1. The coefficient of \(x^4\) gives us \(A + B = 0\). 2. The coefficient of \(x^3\) gives us \(D = 0\). 3. The coefficient of \(x^2\) gives us \(C = A + 1\). 4. The coefficient of \(x\) gives us \(-2A + E = 0\). 5. The constant term gives us \(5A = 20\). Now, let's solve these equations. ### Step 7: Solve the System of Equations We can solve the equations: 1. \(5A = 20\) implies \(A = 4\). 2. From \(A + B = 0\), we have \(B = -4\). 3. From \(C = A + 1\), we have \(C = 5\). 4. From \(D = 0\), we have \(D = 0\). 5. From \(-2A + E = 0\), we have \(E = 8\). Thus, we have: - \(A = 4\) - \(B = -4\) - \(C = 5\) - \(D = 0\) - \(E = 8\) ### Step 8: Rewrite the Integral Now we can rewrite the integral as: \[ \int \left( \frac{4}{x} + \frac{-4x^3 + 5x^2 + 8}{x^4 - 2x + 5} \right) \, dx \] ### Step 9: Integrate Each Term Now we can integrate each term separately: 1. \(\int \frac{4}{x} \, dx = 4 \ln |x|\) 2. For the second term, we will need to perform polynomial long division or further integration techniques. Let's calculate the integral of the second term. ### Step 10: Calculate the Integral of the Second Term We will need to evaluate: \[ \int \frac{-4x^3 + 5x^2 + 8}{x^4 - 2x + 5} \, dx \] This may require additional techniques such as substitution or numerical methods. ### Conclusion The integral can be expressed as: \[ 4 \ln |x| + \int \frac{-4x^3 + 5x^2 + 8}{x^4 - 2x + 5} \, dx + C \] Where \(C\) is the constant of integration. If you would like to proceed with the integration of the second term or need further assistance, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the integral \( \int \frac { x ^ { 2 } + 20 } { x ^ { 5 } - 2 x ^ { 2 } + 5 x } d x \), we start by simplifying the expression in the denominator. First, factor out the common term \( x \): \[ x^5 - 2x^2 + 5x = x(x^4 - 2x + 5). \] Next, we look for roots of \( x^4 - 2x + 5 \). However, we find that it has no real roots since its discriminant is negative. To evaluate the integral, we can use partial fraction decomposition or substitution depending on the form. Substituting \( u = x^2 \) yields: \[ du = 2x \, dx \quad \Rightarrow \quad dx = \frac{du}{2\sqrt{u}}. \] Then: \[ \int \frac{x^2 + 20}{x^5 - 2x^2 + 5x} \, dx = \int \frac{u + 20}{u^{5/2} - 2u + 5\sqrt{u}} \cdot \frac{du}{2\sqrt{u}}. \] However, this can lead to complex expressions, so using numerical methods or symbolic algebra software may be advisable for precise solutions. This integral may also involve clever substitutions or contour integration in a complex plane for advanced calculus. Ultimately, the evaluation may not yield a simple result, and alternative methods or numerical approximation might be employed to analyze the integral further. For specific values of \( x \), numerical estimation will give a quick insight into the values of the integral over defined intervals. Stepping through singular points in the denominator could also provide useful limit findings.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad