Pregunta

5 a) Determine whether the binary operation * defined is commutative and whether * is associative i) * defined on \( Z \) by letting \( a * b=a-b \) ii) * defined on \( Q \) by letting \( a * b=a b+1 \) iii) \( \quad \) defined on \( Z^{+} \)by letting \( a * b=2^{a b} \) iv) * defined on \( Z^{+} \)by letting \( a * b=a^{b} \)

Ask by Wyatt Fleming. in Zambia
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- i) Not commutative, not associative. - ii) Commutative, not associative. - iii) Commutative, associative. - iv) Not commutative, not associative.

Solución

To determine whether the binary operations defined are commutative and associative, we will analyze each operation step by step. ### i) Operation defined on \( Z \) by \( a * b = a - b \) **Commutative:** An operation is commutative if \( a * b = b * a \) for all \( a, b \). \[ a * b = a - b \] \[ b * a = b - a \] For \( a * b = b * a \): \[ a - b = b - a \implies a + a = b + b \implies 2a = 2b \implies a = b \] This is not true for all \( a \) and \( b \). Therefore, the operation is **not commutative**. **Associative:** An operation is associative if \( (a * b) * c = a * (b * c) \) for all \( a, b, c \). Calculating \( (a * b) * c \): \[ (a * b) * c = (a - b) * c = (a - b) - c = a - b - c \] Calculating \( a * (b * c) \): \[ b * c = b - c \implies a * (b * c) = a * (b - c) = a - (b - c) = a - b + c \] Since \( a - b - c \neq a - b + c \), the operation is **not associative**. ### ii) Operation defined on \( Q \) by \( a * b = ab + 1 \) **Commutative:** \[ a * b = ab + 1 \] \[ b * a = ba + 1 \] Since multiplication is commutative (\( ab = ba \)), we have: \[ ab + 1 = ba + 1 \] Thus, the operation is **commutative**. **Associative:** Calculating \( (a * b) * c \): \[ (a * b) * c = (ab + 1) * c = (ab + 1)c + 1 = abc + c + 1 \] Calculating \( a * (b * c) \): \[ b * c = bc + 1 \implies a * (b * c) = a * (bc + 1) = a(bc + 1) + 1 = abc + a + 1 \] Since \( abc + c + 1 \neq abc + a + 1 \), the operation is **not associative**. ### iii) Operation defined on \( Z^{+} \) by \( a * b = 2^{ab} \) **Commutative:** \[ a * b = 2^{ab} \] \[ b * a = 2^{ba} \] Since \( ab = ba \), we have: \[ 2^{ab} = 2^{ba} \] Thus, the operation is **commutative**. **Associative:** Calculating \( (a * b) * c \): \[ (a * b) * c = 2^{ab} * c = 2^{(2^{ab})c} = 2^{abc} \] Calculating \( a * (b * c) \): \[ b * c = 2^{bc} \implies a * (b * c) = 2^{a(2^{bc})} = 2^{abc} \] Since both expressions yield \( 2^{abc} \), the operation is **associative**. ### iv) Operation defined on \( Z^{+} \) by \( a * b = a^{b} \) **Commutative:** \[ a * b = a^{b} \] \[ b * a = b^{a} \] In general, \( a^{b} \neq b^{a} \) unless \( a = b \) or both are specific values (like 2 and 4). Thus, the operation is **not commutative**. **Associative:** Calculating \( (a * b) * c \): \[ (a * b) * c = (a^{b}) * c = (a^{b})^{c} = a^{bc} \] Calculating \( a * (b * c) \): \[ b * c = b^{c} \implies a * (b * c) = a^{(b^{c})} \] Since \( a^{bc} \neq a^{(b^{c})} \) in general, the operation is **not associative**. ### Summary: - i) Not commutative, not associative. - ii) Commutative, not associative. - iii) Commutative, associative. - iv) Not commutative, not associative.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's dive into each operation one at a time and determine if they are commutative or associative! For \( a * b = a - b \) on \( Z \), this operation is not commutative because \( a * b \neq b * a \) (e.g., \( 3 * 2 = 1\) but \( 2 * 3 = -1\)). It’s also not associative since \( (a * b) * c \neq a * (b * c) \) (try \( a = 2, b = 3, c = 4\) and see!). For \( a * b = ab + 1 \) on \( Q \), this operation is indeed commutative, as \( ab + 1 = ba + 1 \). However, it is not associative; if you check \( (a * b) * c \) versus \( a * (b * c) \), you’ll find they yield different results. Next, for \( a * b = 2^{ab} \) on \( Z^{+} \), this operation is commutative because \( 2^{ab} = 2^{ba} \). However, it is not associative, and you can see a difference when you evaluate \( (a * b) * c \) and \( a * (b * c) \). Finally, with \( a * b = a^b \) on \( Z^{+} \), the operation is again not commutative (consider \( 2 * 3 \) versus \( 3 * 2 \)), and it also doesn't hold associative properties as \( (a * b) * c \neq a * (b * c) \). In summary: i) Not commutative, not associative. ii) Commutative, not associative. iii) Commutative, not associative. iv) Not commutative, not associative. Math can be quirky like that!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad