Pregunta
upstudy study bank question image url

Suppose that the total cost function, in dollars, for the production of \( x \) units of a product is given by the equation shown below. \( C(x)=4,410+85 x+0.1 x^{2} \) Find the equation of the average cost function, \( \bar{C}(x) \). (a) Find the instantaneous rate of change of average cost with respect to the number of units produced, at any level of production. 210 (b) Find the level of production at which this rate of change equals zero. \( x=210 \) (c) At the value found in part (b), which of the following is true? () The average cost function is greater than the total cost function.

Ask by Edwards Barrett. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At \( x = 210 \), the average cost is less than the total cost, so the statement is false.

Solución

Let's analyze part (c) of your problem step-by-step to determine the correctness of the given statement. ### Recap of Previous Parts 1. **Total Cost Function:** \[ C(x) = 4,\!410 + 85x + 0.1x^2 \] 2. **Average Cost Function:** \[ \bar{C}(x) = \frac{C(x)}{x} = \frac{4,\!410}{x} + 85 + 0.1x \] 3. **Instantaneous Rate of Change of Average Cost (First Derivative):** \[ \bar{C}'(x) = -\frac{4,\!410}{x^2} + 0.1 \] 4. **Critical Point (Setting \(\bar{C}'(x) = 0\)):** \[ -\frac{4,\!410}{x^2} + 0.1 = 0 \implies x^2 = \frac{4,\!410}{0.1} = 44,\!100 \implies x = 210 \] ### Analyzing Part (c) **Statement:** > "The average cost function is greater than the total cost function." Let's evaluate this at \( x = 210 \). 1. **Calculate Total Cost at \( x = 210 \):** \[ C(210) = 4,\!410 + 85(210) + 0.1(210)^2 = 4,\!410 + 17,\!850 + 4,\!410 = 26,\!670 \text{ dollars} \] 2. **Calculate Average Cost at \( x = 210 \):** \[ \bar{C}(210) = \frac{4,\!410}{210} + 85 + 0.1(210) = 21 + 85 + 21 = 127 \text{ dollars} \] 3. **Compare \( \bar{C}(210) \) and \( C(210) \):** \[ \bar{C}(210) = 127 \text{ dollars} \\ C(210) = 26,\!670 \text{ dollars} \] Clearly, \( \bar{C}(210) < C(210) \). ### Conclusion The statement "**The average cost function is greater than the total cost function**" is **false** at \( x = 210 \). In reality, the average cost per unit is **less than** the total cost at this level of production. **Correct Interpretation:** - At \( x = 210 \), the average cost function reaches its minimum value. - The average cost per unit (\( \bar{C}(x) \)) is significantly less than the total cost (\( C(x) \)). ### Final Answer **False. At x = 210, the average cost is less than the total cost, so the statement is not true.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the average cost function, \(\bar{C}(x)\), we divide the total cost function \(C(x)\) by the number of units produced, \(x\): \(\bar{C}(x) = \frac{C(x)}{x} = \frac{4,410 + 85x + 0.1x^2}{x} = \frac{4,410}{x} + 85 + 0.1x\). This equation gives us the cost per unit produced, making it easier to analyze efficiency! Now, regarding the instantaneous rate of change of the average cost, it represents how quickly the average cost is changing as you produce more units. When this rate is zero at \(x = 210\), it indicates that you’ve hit a sweet spot in production: any more units produced won’t affect the average cost, which is an optimal point for businesses aiming to maximize profit and minimize costs!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad