Pregunta
upstudy study bank question image url

Julissa wants to join her local gym. The membership cost is \( \$ 282.90 \) for 6 months and \( \$ 448.80 \) for one year. Which of money, \( y \), she will spend on her gym membership for \( x \) months? \( \begin{array}{l}y=83.82 x+33.18 \\ y=117 x+27.65 \\ y=33.18 x+83.82 \\ y=27.65 x+117\end{array} \)

Ask by Clarke Franklin. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct equation for the gym membership cost is \( y = 27.65x + 117 \).

Solución

To determine the cost \( y \) Julissa will spend on her gym membership for \( x \) months, we can use the given membership costs for 6 months and 1 year (12 months) to derive a linear equation of the form \( y = mx + b \), where: - \( y \) is the total cost, - \( x \) is the number of months, - \( m \) is the monthly rate, and - \( b \) is the fixed fee. **Given:** - **6-month membership:** \( y = \$282.90 \) when \( x = 6 \) - **12-month membership:** \( y = \$448.80 \) when \( x = 12 \) **Step 1: Calculate the Monthly Rate (\( m \))** \[ m = \frac{\text{Change in cost}}{\text{Change in months}} = \frac{448.80 - 282.90}{12 - 6} = \frac{165.90}{6} = 27.65 \text{ dollars per month} \] **Step 2: Determine the Fixed Fee (\( b \))** Using one of the points, say \( (6, 282.90) \): \[ 282.90 = 27.65 \times 6 + b \\ 282.90 = 165.90 + b \\ b = 282.90 - 165.90 = 117 \] **Final Equation:** \[ y = 27.65x + 117 \] **Therefore, the correct equation is:** \[ \boxed{y=27.65\, x +\,117} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the relationship between the number of months Julissa spends on her gym membership and the total cost, let's first analyze the costs. For 6 months, the cost is \( \$ 282.90 \), which gives us a rate of about \( \$ 47.15 \) per month. For a year (12 months), the total cost is \( \$ 448.80 \), which translates to approximately \( \$ 37.40 \) per month. To create the total cost equation, we can segment it based on the time frame. For \( x \) months, if she opts for the 6-month plan and continues afterward, then the cost for \( x \) months where \( x \leq 6 \) is simply the \( \$ 47.15 \) rate. If \( x \) exceeds 6 months, then she modifies her approach, which could lead towards the 12-month rate, usually resulting in a more cost-effective option. When looking at the options presented: none represent either a simplistic linear relationship based solely on the membership plan, as numbers seem off. Remember, a linear equation for this would be structured around the discounted monthly rate for extended use. The answer to the problem lies in setting the equation for each segment from \( x = 1 \) to \( 6 \) and \( x = 7 \) to \( 12 \) and adjusting accordingly—working through careful math ensures she gets the most out of her dollars! The approach would require some refining of the given equations to align with the gym's pricing structure accurately. Make sure to check the calculations again.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad