Pregunta
\( \frac{\text { 2.L) } 5 \cdot 2^{n+3}-3 \cdot 2^{n+2}}{2^{n+1}} \)
Ask by Ayala May. in South Africa
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified expression is 14.
Solución
Let's simplify the expression:
\[
\frac{5 \cdot 2^{n+3} - 3 \cdot 2^{n+2}}{2^{n+1}}
\]
**Step 1: Factor Out Common Terms in the Numerator**
First, recognize that \(2^{n+3}\) and \(2^{n+2}\) can both be expressed in terms of \(2^{n+1}\):
\[
2^{n+3} = 2^{n+1} \cdot 2^2 = 2^{n+1} \cdot 4
\]
\[
2^{n+2} = 2^{n+1} \cdot 2 = 2^{n+1} \cdot 2
\]
Now, substitute these back into the numerator:
\[
5 \cdot 2^{n+3} = 5 \cdot 2^{n+1} \cdot 4 = 20 \cdot 2^{n+1}
\]
\[
3 \cdot 2^{n+2} = 3 \cdot 2^{n+1} \cdot 2 = 6 \cdot 2^{n+1}
\]
So, the numerator becomes:
\[
20 \cdot 2^{n+1} - 6 \cdot 2^{n+1} = 14 \cdot 2^{n+1}
\]
**Step 2: Simplify the Fraction**
Now, the expression looks like this:
\[
\frac{14 \cdot 2^{n+1}}{2^{n+1}}
\]
Since \(2^{n+1}\) appears in both the numerator and the denominator, they cancel each other out:
\[
\frac{14 \cdot \cancel{2^{n+1}}}{\cancel{2^{n+1}}} = 14
\]
**Final Answer:** The simplified expression is **14**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To simplify the expression \( \frac{5 \cdot 2^{n+3} - 3 \cdot 2^{n+2}}{2^{n+1}} \), we can factor out \( 2^{n+2} \) from the numerator. This gives us: \[ = \frac{2^{n+2}(5 \cdot 2 - 3)}{2^{n+1}} \] Now, simplify the numerator: \[ = \frac{2^{n+2} \cdot (10 - 3)}{2^{n+1}} = \frac{2^{n+2} \cdot 7}{2^{n+1}} \] When dividing the powers of \( 2 \): \[ = 7 \cdot 2^{n+1} \] So the full simplification leads to: \[ = 7 \cdot 2^{n+1} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium