Pregunta
upstudy study bank question image url

Consider a credit card with a balance of \( \$ 9000 \) and an APR of \( 12.5 \% \). If you want to make monthly payments in order to pay off the balance in 3 years, what is the total amount you will pay? Round your answer to the nearest cent, If necessary. Formulas

Ask by Vaughn Paul. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To pay off a \$9,000 credit card balance with a 12.5% APR over 3 years, you'll need to make monthly payments of approximately \$301.08 each. Over 36 months, the total amount you'll pay is \$10,838.88.

Solución

To solve this problem, we need to determine the monthly payment required to pay off a credit card balance of \( \$9000 \) over 3 years with an annual percentage rate (APR) of \( 12.5\% \). ### Step 1: Convert APR to Monthly Interest Rate The monthly interest rate \( r \) can be calculated from the APR as follows: \[ r = \frac{\text{APR}}{12} = \frac{12.5\%}{12} = \frac{0.125}{12} \] ### Step 2: Calculate the Number of Payments The total number of monthly payments \( n \) over 3 years is: \[ n = 3 \times 12 = 36 \] ### Step 3: Use the Formula for Monthly Payment The formula for the monthly payment \( M \) on an amortizing loan is given by: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where: - \( P \) is the principal amount (the initial balance), - \( r \) is the monthly interest rate, - \( n \) is the number of payments. ### Step 4: Calculate Monthly Payment Now we will calculate \( M \) using the values we have: - \( P = 9000 \) - \( r = \frac{0.125}{12} \) - \( n = 36 \) Let's calculate \( M \). First, we need to calculate \( r \): \[ r = \frac{0.125}{12} \approx 0.01041667 \] Now we can substitute these values into the formula for \( M \): \[ M = 9000 \frac{0.01041667(1 + 0.01041667)^{36}}{(1 + 0.01041667)^{36} - 1} \] Now, I will perform the calculation for \( M \). Calculate the value by following steps: - step0: Calculate: \(\frac{9000\left(0.01041667\left(1+0.01041667\right)^{36}\right)}{\left(\left(1+0.01041667\right)^{36}-1\right)}\) - step1: Remove the parentheses: \(\frac{9000\times 0.01041667\left(1+0.01041667\right)^{36}}{\left(1+0.01041667\right)^{36}-1}\) - step2: Add the numbers: \(\frac{9000\times 0.01041667\times 1.01041667^{36}}{\left(1+0.01041667\right)^{36}-1}\) - step3: Add the numbers: \(\frac{9000\times 0.01041667\times 1.01041667^{36}}{1.01041667^{36}-1}\) - step4: Convert the expressions: \(\frac{9000\times 0.01041667\left(\frac{101041667}{100000000}\right)^{36}}{1.01041667^{36}-1}\) - step5: Convert the expressions: \(\frac{9000\times 0.01041667\left(\frac{101041667}{100000000}\right)^{36}}{\left(\frac{101041667}{100000000}\right)^{36}-1}\) - step6: Multiply: \(\frac{\frac{9375003\times 101041667^{36}}{10^{293}}}{\left(\frac{101041667}{100000000}\right)^{36}-1}\) - step7: Subtract the numbers: \(\frac{\frac{9375003\times 101041667^{36}}{10^{293}}}{\frac{101041667^{36}-100000000^{36}}{100000000^{36}}}\) - step8: Multiply by the reciprocal: \(\frac{9375003\times 101041667^{36}}{10^{293}}\times \frac{100000000^{36}}{101041667^{36}-100000000^{36}}\) - step9: Rewrite the expression: \(\frac{9375003\times 101041667^{36}}{10^{293}}\times \frac{10^{288}}{101041667^{36}-100000000^{36}}\) - step10: Reduce the numbers: \(\frac{9375003\times 101041667^{36}}{10^{5}}\times \frac{1}{101041667^{36}-100000000^{36}}\) - step11: Multiply the fractions: \(\frac{9375003\times 101041667^{36}}{10^{5}\left(101041667^{36}-100000000^{36}\right)}\) - step12: Multiply: \(\frac{9375003\times 101041667^{36}}{10^{5}\times 101041667^{36}-10^{293}}\) The monthly payment \( M \) is approximately \( 301.08 \). ### Step 5: Calculate Total Amount Paid To find the total amount paid over the 3 years, we multiply the monthly payment by the total number of payments: \[ \text{Total Amount Paid} = M \times n = 301.08 \times 36 \] Now, let's calculate the total amount paid. Calculate the value by following steps: - step0: Calculate: \(301.08\times 36\) - step1: Multiply the numbers: \(10838.88\) The total amount paid over the 3 years is approximately \( 10838.88 \). ### Final Answer Thus, the total amount you will pay to pay off the credit card balance in 3 years is **$10,838.88**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To pay off a credit card balance of $9,000 in 3 years with an APR of 12.5%, you can use the formula for the monthly payment on an amortizing loan: \[ M = P \times \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where: - \( M \) = monthly payment - \( P \) = principal amount (balance) = $9,000 - \( r \) = monthly interest rate = \( \frac{12.5\%}{12} = 0.01041667 \) - \( n \) = total number of payments = \( 3 \times 12 = 36 \) Calculating \( M \): \[ M = 9000 \times \frac{0.01041667(1 + 0.01041667)^{36}}{(1 + 0.01041667)^{36} - 1} \] Calculating the total amount paid: Total amount paid = \( M \times n \) After performing the calculations, the result is: Monthly Payment: \( M ≈ 299.71 \) Total Amount Paid = \( 299.71 \times 36 = 10,788.56 \) Thus, the total amount you will pay is approximately **$10,788.56**. --- Did you know that credit card debts can be incredibly tricky given the compounding interest? Many people overlook how much they end up paying in interest, especially if they only make minimum payments. That's why tackling your debt head-on and creating a solid repayment plan is so important! If you're looking to maximize your savings, consider making bi-weekly payments instead of monthly. This strategy can help you pay down the principal faster, leading to a reduction in interest accrued. It's like giving your wallet a little TLC; every extra payment counts!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad