Prove \( \frac{1-\cos 2 A}{\sin 2 A}=\tan \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To prove the identity \( \frac{1 - \cos 2A}{\sin 2A} = \tan A \), let's start with some trigonometric identities. Recall that: 1. \( \cos 2A = 1 - 2\sin^2 A \) (the double angle formula for cosine). 2. \( \sin 2A = 2\sin A \cos A \) (the double angle formula for sine). Now substituting \( \cos 2A \) into the left side of the equation: \[ \frac{1 - \cos 2A}{\sin 2A} = \frac{1 - (1 - 2 \sin^2 A)}{2 \sin A \cos A} \] Simplifying the numerator: \[ = \frac{2 \sin^2 A}{2 \sin A \cos A} \] The \( 2 \) in both the numerator and denominator can be canceled: \[ = \frac{\sin^2 A}{\sin A \cos A} \] Now we can simplify this further: \[ = \frac{\sin A}{\cos A} \] This is equal to \( \tan A \). Hence, we have: \[ \frac{1 - \cos 2A}{\sin 2A} = \tan A \] This completes the proof.