Pregunta
Find the greatest common factor. \( 9 v^{3}, 6 v^{3} \) Write your answer as a constant times a product of single variables raised to exponents.
Ask by Mullins Curry. in the United States
Feb 02,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The greatest common factor is \( 3v^{3} \).
Solución
To find the greatest common factor (GCF) of the terms \( 9v^{3} \) and \( 6v^{3} \), follow these steps:
1. **Factor the Constants:**
- \( 9 = 3^2 \)
- \( 6 = 2 \times 3 \)
2. **Identify the GCF of the Constants:**
- The common prime factor is \( 3 \).
- So, the GCF of the constants is \( 3 \).
3. **Identify the GCF of the Variable Parts:**
- Both terms have \( v^3 \).
- So, the GCF of the variables is \( v^3 \).
4. **Combine the GCFs:**
- Multiply the GCF of the constants by the GCF of the variables.
- \( \text{GCF} = 3 \times v^3 = 3v^3 \)
**Final Answer:**
\[ 3v^{3} \]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To find the greatest common factor (GCF) of the terms \(9v^{3}\) and \(6v^{3}\), we start with the numerical coefficients. The GCF of 9 and 6 is 3, as it is the largest number that divides both coefficients. Next, we look at the variable part, \(v^{3}\). Since both terms share the same variable raised to the same power, we can take \(v^{3}\) as it is. Thus, the GCF of \(9v^{3}\) and \(6v^{3}\) is: \[ 3v^{3} \] Now you have the GCF nicely packaged as a constant times a product of variables!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium