Rationalise the den a) \( \frac{1+\sqrt{2}}{1-\sqrt{2}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To rationalize the denominator of the expression \( \frac{1+\sqrt{2}}{1-\sqrt{2}} \), you multiply the numerator and the denominator by the conjugate of the denominator, which is \( 1+\sqrt{2} \). So, we have: \[ \frac{(1+\sqrt{2})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})} \] In the numerator: \[ (1+\sqrt{2})(1+\sqrt{2}) = 1 + 2\sqrt{2} + 2 = 3 + 2\sqrt{2} \] In the denominator: \[ (1-\sqrt{2})(1+\sqrt{2}) = 1 - 2 = -1 \] Putting it all together, we get: \[ \frac{3 + 2\sqrt{2}}{-1} = -3 - 2\sqrt{2} \] So the rationalized form of \( \frac{1+\sqrt{2}}{1-\sqrt{2}} \) is \( -3 - 2\sqrt{2} \).