Pregunta
upstudy study bank question image url

Determine if the function below has a horizontal or a slant asymptote, and explain why. \[ f(x)=\frac{-1-2 x}{3 x+5 x^{3}+4 x^{2}-3} \] Answer Attempt 1 out of 2 The function has a numerator is \( \square \) the degree of the denominator. Horizontal/Slant asymptote: \( \square \) asymptote because the degree of the Submit Answer

Ask by Boone Warner. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function has a horizontal asymptote at \( y = 0 \) because the degree of the numerator is less than the degree of the denominator.

Solución

To determine whether the function \( f(x) = \frac{-1 - 2x}{3x + 5x^{3} + 4x^{2} - 3} \) has a horizontal or slant asymptote, we analyze the degrees of the numerator and the denominator. ### Step 1: Identify the Degrees - **Numerator:** The highest power of \( x \) in the numerator is \( x \), so the degree is **1**. - **Denominator:** The highest power of \( x \) in the denominator is \( x^{3} \), so the degree is **3**. ### Step 2: Compare the Degrees - **If the degree of the numerator < degree of the denominator:** The horizontal asymptote is \( y = 0 \). - **If the degree of the numerator = degree of the denominator:** The horizontal asymptote is \( y = \frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}} \). - **If the degree of the numerator = degree of the denominator + 1:** There is a slant (oblique) asymptote. ### Conclusion for \( f(x) \) - **Degree of Numerator (1) < Degree of Denominator (3):** - The function **has a horizontal asymptote**. - **Numerator is less than the degree of the denominator.** - **Horizontal Asymptote:** \( y = 0 \) asymptote because the degree of the numerator is less than the degree of the denominator. ### Final Answer The function has a **horizontal** asymptote. The numerator is **less than** the degree of the denominator. **Horizontal** asymptote: \( y = 0 \) asymptote because the degree of the numerator is less than the degree of the denominator.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When analyzing the function \( f(x) = \frac{-1-2x}{3x + 5x^3 + 4x^2 - 3} \), we first identify the degrees of the numerator and denominator. The numerator is a polynomial of degree 1 (since the highest power of \( x \) is 1), and the denominator is a polynomial of degree 3 (since \( 5x^3 \) is the highest term). Since the degree of the numerator is less than the degree of the denominator, the function has a horizontal asymptote at \( y = 0 \). To summarize, the function has a horizontal asymptote at \( y = 0 \) because the degree of the numerator is less than the degree of the denominator. This means that as \( x \) approaches infinity or negative infinity, the value of \( f(x) \) approaches zero, rather than tending towards infinity, which would be the case for slant asymptotes.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad