Solve the equation by factoring. \[ 8 x^{2}+10 x-7=0 \] The solution set is \( \{\square\} \). (Use a comma to separate answers as needed. Type each solution only once.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the equation \( 8x^2 + 10x - 7 = 0 \) by factoring, we need to express it in the form of \((ax + b)(cx + d) = 0\). First, we can look for two numbers that multiply to \( 8 \times -7 = -56 \) and add up to \( 10 \). Those numbers are \( 14 \) and \( -4 \). Rewriting the middle term, we have: \[ 8x^2 + 14x - 4x - 7 = 0. \] Next, we group the terms: \[ (8x^2 + 14x) + (-4x - 7) = 0. \] Factoring gives us: \[ 2x(4x + 7) - 1(4x + 7) = 0. \] Now factoring out the common factor: \[ (2x - 1)(4x + 7) = 0. \] Setting each factor to zero gives: 1. \( 2x - 1 = 0 \) → \( 2x = 1 \) → \( x = \frac{1}{2} \). 2. \( 4x + 7 = 0 \) → \( 4x = -7 \) → \( x = -\frac{7}{4} \). Thus, the solution set is \( \{\frac{1}{2}, -\frac{7}{4}\} \).