Responder
The range of the measurements is 0.09 mm. The standard deviation of the measurements is 0.033 mm.
Solución
To find the range of the measurements, we need to subtract the smallest measurement from the largest measurement.
Given measurements: \( 10.28, 10.31, 10.24, 10.24, 10.24, 10.23, 10.23, 10.31, 10.24, 10.22 \)
The largest measurement is 10.31 mm and the smallest measurement is 10.22 mm.
Range = Largest measurement - Smallest measurement
Range = 10.31 mm - 10.22 mm
Range = 0.09 mm
Therefore, the range of the measurements is 0.09 mm.
To find the standard deviation of the measurements, we can use the formula for the standard deviation of a set of data:
\[ \text{Standard Deviation} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \]
where:
- \( x_i \) is each individual measurement
- \( \bar{x} \) is the mean of the measurements
- \( n \) is the number of measurements
First, we need to calculate the mean of the measurements:
Mean = \( \frac{\sum_{i=1}^{n} x_i}{n} \)
Let's calculate the mean and then the standard deviation.
Calculate the value by following steps:
- step0: Calculate:
\(10.28+10.31+10.24+10.24+10.24+10.23+10.23+10.31+10.24+10.22\)
- step1: Write as a multiplication:
\(10.28+10.31+10.24\times 4+10.23+10.23+10.31+10.22\)
- step2: Multiply the numbers:
\(10.28+10.31+40.96+10.23+10.23+10.31+10.22\)
- step3: Add the numbers:
\(102.54\)
The sum of the measurements is 102.54 mm.
Next, we calculate the mean of the measurements:
Mean = \( \frac{102.54}{10} \)
Mean = 10.254 mm
Now, we can calculate the standard deviation using the formula provided earlier.
Calculate the value by following steps:
- step0: Calculate:
\(\left(10.28-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\)
- step1: Write as a multiplication:
\(\left(10.28-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\)
- step2: Subtract the numbers:
\(0.026^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\)
- step3: Subtract the numbers:
\(0.026^{2}+0.056^{2}+\left(10.24-10.254\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\)
- step4: Subtract the numbers:
\(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\)
- step5: Subtract the numbers:
\(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\)
- step6: Subtract the numbers:
\(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\)
- step7: Subtract the numbers:
\(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(10.22-10.254\right)^{2}\)
- step8: Subtract the numbers:
\(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\)
- step9: Convert the expressions:
\(\left(\frac{13}{500}\right)^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\)
- step10: Convert the expressions:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\)
- step11: Convert the expressions:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\)
- step12: Convert the expressions:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\)
- step13: Convert the expressions:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\)
- step14: Convert the expressions:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-0.034\right)^{2}\)
- step15: Convert the expressions:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\)
- step16: Multiply the terms:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+4\times \frac{7^{2}}{500^{2}}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\)
- step17: Rewrite the expression:
\(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+4\times \frac{7^{2}}{500^{2}}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\)
- step18: Add the numbers:
\(\left(\frac{13}{500}\right)^{2}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\)
- step19: Add the numbers:
\(\left(\frac{13}{500}\right)^{2}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\frac{18}{15625}+\left(-\frac{17}{500}\right)^{2}\)
- step20: Rewrite the expression:
\(\frac{13^{2}}{500^{2}}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\frac{18}{15625}+\left(-\frac{17}{500}\right)^{2}\)
- step21: Rewrite the expression:
\(\frac{13^{2}}{500^{2}}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\frac{18}{15625}+\frac{17^{2}}{500^{2}}\)
- step22: Rewrite the expression:
\(\frac{13^{2}}{500^{2}}+\frac{98}{15625}+\frac{196}{500^{2}}+\frac{18}{15625}+\frac{17^{2}}{500^{2}}\)
- step23: Reduce fractions to a common denominator:
\(\frac{13^{2}\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{98\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{196\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\)
- step24: Multiply the terms:
\(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{196\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\)
- step25: Multiply the terms:
\(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\)
- step26: Multiply the terms:
\(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{4}}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\)
- step27: Multiply the terms:
\(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{4}}+\frac{18\times 16\times 500^{2}}{500^{4}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\)
- step28: Multiply the terms:
\(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{4}}+\frac{18\times 16\times 500^{2}}{500^{4}}+\frac{17^{2}\times 500^{2}}{500^{4}}\)
- step29: Transform the expression:
\(\frac{13^{2}\times 15625\times 16+98\times 16\times 500^{2}+196\times 15625\times 16+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\)
- step30: Multiply the terms:
\(\frac{42250000+98\times 16\times 500^{2}+196\times 15625\times 16+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\)
- step31: Multiply the terms:
\(\frac{42250000+1568\times 500^{2}+196\times 15625\times 16+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\)
- step32: Multiply the terms:
\(\frac{42250000+1568\times 500^{2}+49000000+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\)
- step33: Multiply the terms:
\(\frac{42250000+1568\times 500^{2}+49000000+288\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\)
- step34: Multiply the terms:
\(\frac{42250000+1568\times 500^{2}+49000000+288\times 500^{2}+8500^{2}}{500^{4}}\)
- step35: Add the numbers:
\(\frac{555250000+8500^{2}}{500^{4}}\)
- step36: Rewrite the expression:
\(\frac{500^{2}\left(2221+289\right)}{500^{4}}\)
- step37: Reduce the fraction:
\(\frac{2221+289}{500^{2}}\)
- step38: Simplify:
\(\frac{2510}{500^{2}}\)
- step39: Reduce the fraction:
\(\frac{251}{25000}\)
The sum of the squared differences from the mean is 0.01004.
Now, we can calculate the standard deviation:
Standard Deviation = \( \sqrt{\frac{0.01004}{10-1}} \)
Standard Deviation = \( \sqrt{\frac{0.01004}{9}} \)
Standard Deviation = \( \sqrt{0.001112} \)
Standard Deviation = 0.033 mm
Therefore, the standard deviation of the measurements is 0.033 mm.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución