Pregunta
upstudy study bank question image url

A tool and die company manufactures a precise pin that is supposed to measure 10.25 mm in diameter. For quality control purposes, ten pins are selected at random and measured to determine how closely they match the specified diameter. The results are provided. Complete parts (a) and (b) below. \( 10.28,10.31,10.24,10.24,10.24,10.23,10.23,10.31,10.24,10.22 \), Find the range of the measurements. The range is 0.09 mm . (Simplify your answer.) (b) Find the standard deviation of the measurements. The standard deviation is (Round to three decimal places as needed.)

Ask by Grant Lindsey. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The range of the measurements is 0.09 mm. The standard deviation of the measurements is 0.033 mm.

Solución

To find the range of the measurements, we need to subtract the smallest measurement from the largest measurement. Given measurements: \( 10.28, 10.31, 10.24, 10.24, 10.24, 10.23, 10.23, 10.31, 10.24, 10.22 \) The largest measurement is 10.31 mm and the smallest measurement is 10.22 mm. Range = Largest measurement - Smallest measurement Range = 10.31 mm - 10.22 mm Range = 0.09 mm Therefore, the range of the measurements is 0.09 mm. To find the standard deviation of the measurements, we can use the formula for the standard deviation of a set of data: \[ \text{Standard Deviation} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} \] where: - \( x_i \) is each individual measurement - \( \bar{x} \) is the mean of the measurements - \( n \) is the number of measurements First, we need to calculate the mean of the measurements: Mean = \( \frac{\sum_{i=1}^{n} x_i}{n} \) Let's calculate the mean and then the standard deviation. Calculate the value by following steps: - step0: Calculate: \(10.28+10.31+10.24+10.24+10.24+10.23+10.23+10.31+10.24+10.22\) - step1: Write as a multiplication: \(10.28+10.31+10.24\times 4+10.23+10.23+10.31+10.22\) - step2: Multiply the numbers: \(10.28+10.31+40.96+10.23+10.23+10.31+10.22\) - step3: Add the numbers: \(102.54\) The sum of the measurements is 102.54 mm. Next, we calculate the mean of the measurements: Mean = \( \frac{102.54}{10} \) Mean = 10.254 mm Now, we can calculate the standard deviation using the formula provided earlier. Calculate the value by following steps: - step0: Calculate: \(\left(10.28-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\) - step1: Write as a multiplication: \(\left(10.28-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\) - step2: Subtract the numbers: \(0.026^{2}+\left(10.31-10.254\right)^{2}+\left(10.24-10.254\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\) - step3: Subtract the numbers: \(0.026^{2}+0.056^{2}+\left(10.24-10.254\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\) - step4: Subtract the numbers: \(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(10.23-10.254\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\) - step5: Subtract the numbers: \(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(10.23-10.254\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\) - step6: Subtract the numbers: \(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+\left(10.31-10.254\right)^{2}+\left(10.22-10.254\right)^{2}\) - step7: Subtract the numbers: \(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(10.22-10.254\right)^{2}\) - step8: Subtract the numbers: \(0.026^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\) - step9: Convert the expressions: \(\left(\frac{13}{500}\right)^{2}+0.056^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\) - step10: Convert the expressions: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-0.014\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\) - step11: Convert the expressions: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-0.024\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\) - step12: Convert the expressions: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-0.024\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\) - step13: Convert the expressions: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+0.056^{2}+\left(-0.034\right)^{2}\) - step14: Convert the expressions: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-0.034\right)^{2}\) - step15: Convert the expressions: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{7}{500}\right)^{2}\times 4+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\) - step16: Multiply the terms: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+4\times \frac{7^{2}}{500^{2}}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\) - step17: Rewrite the expression: \(\left(\frac{13}{500}\right)^{2}+\left(\frac{7}{125}\right)^{2}+\left(\frac{7}{125}\right)^{2}+4\times \frac{7^{2}}{500^{2}}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\) - step18: Add the numbers: \(\left(\frac{13}{500}\right)^{2}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{3}{125}\right)^{2}+\left(-\frac{17}{500}\right)^{2}\) - step19: Add the numbers: \(\left(\frac{13}{500}\right)^{2}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\frac{18}{15625}+\left(-\frac{17}{500}\right)^{2}\) - step20: Rewrite the expression: \(\frac{13^{2}}{500^{2}}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\frac{18}{15625}+\left(-\frac{17}{500}\right)^{2}\) - step21: Rewrite the expression: \(\frac{13^{2}}{500^{2}}+\frac{98}{15625}+4\times \frac{7^{2}}{500^{2}}+\frac{18}{15625}+\frac{17^{2}}{500^{2}}\) - step22: Rewrite the expression: \(\frac{13^{2}}{500^{2}}+\frac{98}{15625}+\frac{196}{500^{2}}+\frac{18}{15625}+\frac{17^{2}}{500^{2}}\) - step23: Reduce fractions to a common denominator: \(\frac{13^{2}\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{98\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{196\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\) - step24: Multiply the terms: \(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{196\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\) - step25: Multiply the terms: \(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{2}\times 15625\times 16}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\) - step26: Multiply the terms: \(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{4}}+\frac{18\times 16\times 500^{2}}{15625\times 16\times 500^{2}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\) - step27: Multiply the terms: \(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{4}}+\frac{18\times 16\times 500^{2}}{500^{4}}+\frac{17^{2}\times 500^{2}}{500^{2}\times 500^{2}}\) - step28: Multiply the terms: \(\frac{13^{2}\times 15625\times 16}{500^{4}}+\frac{98\times 16\times 500^{2}}{500^{4}}+\frac{196\times 15625\times 16}{500^{4}}+\frac{18\times 16\times 500^{2}}{500^{4}}+\frac{17^{2}\times 500^{2}}{500^{4}}\) - step29: Transform the expression: \(\frac{13^{2}\times 15625\times 16+98\times 16\times 500^{2}+196\times 15625\times 16+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\) - step30: Multiply the terms: \(\frac{42250000+98\times 16\times 500^{2}+196\times 15625\times 16+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\) - step31: Multiply the terms: \(\frac{42250000+1568\times 500^{2}+196\times 15625\times 16+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\) - step32: Multiply the terms: \(\frac{42250000+1568\times 500^{2}+49000000+18\times 16\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\) - step33: Multiply the terms: \(\frac{42250000+1568\times 500^{2}+49000000+288\times 500^{2}+17^{2}\times 500^{2}}{500^{4}}\) - step34: Multiply the terms: \(\frac{42250000+1568\times 500^{2}+49000000+288\times 500^{2}+8500^{2}}{500^{4}}\) - step35: Add the numbers: \(\frac{555250000+8500^{2}}{500^{4}}\) - step36: Rewrite the expression: \(\frac{500^{2}\left(2221+289\right)}{500^{4}}\) - step37: Reduce the fraction: \(\frac{2221+289}{500^{2}}\) - step38: Simplify: \(\frac{2510}{500^{2}}\) - step39: Reduce the fraction: \(\frac{251}{25000}\) The sum of the squared differences from the mean is 0.01004. Now, we can calculate the standard deviation: Standard Deviation = \( \sqrt{\frac{0.01004}{10-1}} \) Standard Deviation = \( \sqrt{\frac{0.01004}{9}} \) Standard Deviation = \( \sqrt{0.001112} \) Standard Deviation = 0.033 mm Therefore, the standard deviation of the measurements is 0.033 mm.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the standard deviation of the measurements, you first need to calculate the mean (average) of the given values: 1. **Calculate the Mean:** \[ \text{Mean} = \frac{10.28 + 10.31 + 10.24 + 10.24 + 10.24 + 10.23 + 10.23 + 10.31 + 10.24 + 10.22}{10} \] \[ = \frac{102.28}{10} = 10.228 \] 2. **Calculate the Variance:** Now, find the squared differences from the mean: \[ \text{Variance} = \frac{\sum (x_i - \text{Mean})^2}{n} \] Where \( n \) is the number of measurements (10). The squared differences are: - \( (10.28 - 10.228)^2 = 0.0027 \) - \( (10.31 - 10.228)^2 = 0.0066 \) - \( (10.24 - 10.228)^2 = 0.0001 \) - \( (10.24 - 10.228)^2 = 0.0001 \) - \( (10.24 - 10.228)^2 = 0.0001 \) - \( (10.23 - 10.228)^2 = 0.0000 \) - \( (10.23 - 10.228)^2 = 0.0000 \) - \( (10.31 - 10.228)^2 = 0.0066 \) - \( (10.24 - 10.228)^2 = 0.0001 \) - \( (10.22 - 10.228)^2 = 0.0001 \) Sum the squared differences: \[ = 0.0027 + 0.0066 + 0.0001 + 0.0001 + 0.0001 + 0.0000 + 0.0000 + 0.0066 + 0.0001 + 0.0001 = 0.0169 \] Now, divide by \( n = 10 \): \[ \text{Variance} = \frac{0.0169}{10} = 0.00169 \] 3. **Calculate the Standard Deviation:** Finally, take the square root of the variance: \[ \text{Standard Deviation} = \sqrt{0.00169} \approx 0.041 \] So, rounding to three decimal places, the standard deviation is approximately **0.041 mm**.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad