Pregunta
upstudy study bank question image url

Find an equation of the line parallel to \( 9 x-y=2 \) and passing through \( (4,1) \). Express the equation in standard form. Which of the following is the equation of a line parallel to \( 9 x-y=2 \) and passing through \( (4,1) \) ?

Ask by Rojas Li. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the line parallel to \( 9x - y = 2 \) and passing through \( (4,1) \) is \( 9x - y = 35 \).

Solución

To find the equation of a line that is **parallel** to \( 9x - y = 2 \) and passes through the point \( (4, 1) \), follow these steps: ### 1. Determine the Slope of the Given Line First, let's find the slope of the line \( 9x - y = 2 \). Rewrite the equation in **slope-intercept form** \( y = mx + b \): \[ 9x - y = 2 \\ \Rightarrow -y = -9x + 2 \\ \Rightarrow y = 9x - 2 \] Here, the slope (\( m \)) is **9**. ### 2. Use the Point-Slope Form for the Parallel Line Since parallel lines have the **same slope**, the new line will also have a slope of **9**. Using the **point-slope form**: \[ y - y_1 = m(x - x_1) \] where \( (x_1, y_1) = (4, 1) \) and \( m = 9 \): \[ y - 1 = 9(x - 4) \] ### 3. Convert to Standard Form Expand and rearrange the equation to **standard form** \( Ax + By = C \): \[ y - 1 = 9x - 36 \\ \Rightarrow y = 9x - 35 \\ \Rightarrow 9x - y = 35 \] ### **Final Answer** The equation of the desired line in standard form is: \[ \boxed{9x\ -\ y\ =\ 35} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find a line parallel to \( 9x - y = 2 \), we first need to determine its slope by rewriting it in slope-intercept form (y = mx + b). Rearranging gives us \( y = 9x - 2 \), indicating that the slope (m) is 9. Since parallel lines share the same slope, the equation of our new line can be written as \( y - 1 = 9(x - 4) \). Simplifying this gives us \( y = 9x - 36 + 1 \), or \( y = 9x - 35\). To express this in standard form, we rearrange it: \( -9x + y = -35 \) or equivalently \( 9x - y = 35 \). So, the equation of the line parallel to \( 9x - y = 2 \) and passing through \( (4, 1) \) is \( 9x - y = 35 \). A fun fact about parallel lines is that no matter how far you extend them, they will never meet! Just like two best friends who always stick together but never cross paths. This concept is important in geometry and has practical applications, like when designing roads that need to maintain a consistent distance apart. Also, if you want to dive deeper into the world of lines, check out some resources on coordinate geometry! You’ll find that understanding the relationships between different types of lines can be used in everything from architecture to computer graphics, making it a versatile and essential topic.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad