Pregunta
upstudy study bank question image url

Given the following position function: (position is in ft , time is in sec ) \( \mathrm{s}(\mathrm{t})=2(4 \mathrm{t}+1)^{\frac{3}{2}} \) Find the acceleration at \( \mathrm{t}=2 \) \( \mathrm{a}(2)=[?] \frac{\mathrm{ft}}{\sec ^{2}} \)

Ask by Murray Medina. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The acceleration at \( t = 2 \) seconds is \( 8 \ \frac{\text{ft}}{\sec^{2}} \).

Solución

To find the acceleration at \( t = 2 \) for the given position function: \[ s(t) = 2(4t + 1)^{\frac{3}{2}} \] we need to differentiate the position function twice with respect to time \( t \). ### Step 1: Find the Velocity \( v(t) \) The velocity \( v(t) \) is the first derivative of the position function \( s(t) \): \[ v(t) = s'(t) = \frac{d}{dt} \left[ 2(4t + 1)^{\frac{3}{2}} \right] \] Using the chain rule: \[ v(t) = 2 \cdot \frac{3}{2} \cdot (4t + 1)^{\frac{1}{2}} \cdot 4 = 12(4t + 1)^{\frac{1}{2}} \] ### Step 2: Find the Acceleration \( a(t) \) The acceleration \( a(t) \) is the second derivative of the position function, or the first derivative of the velocity function: \[ a(t) = v'(t) = \frac{d}{dt} \left[ 12(4t + 1)^{\frac{1}{2}} \right] \] Again, using the chain rule: \[ a(t) = 12 \cdot \frac{1}{2} \cdot (4t + 1)^{-\frac{1}{2}} \cdot 4 = 24(4t + 1)^{-\frac{1}{2}} \] ### Step 3: Evaluate \( a(t) \) at \( t = 2 \) Substitute \( t = 2 \) into the acceleration function: \[ a(2) = 24(4 \cdot 2 + 1)^{-\frac{1}{2}} = 24(9)^{-\frac{1}{2}} = 24 \cdot \frac{1}{3} = 8 \text{ ft/sec}^2 \] **Answer:** \( \mathrm{a}(2) = 8 \ \frac{\mathrm{ft}}{\sec^{2}} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the acceleration at \( t = 2 \), we first need to derive the position function to obtain the velocity function. From the position function \( s(t) = 2(4t + 1)^{\frac{3}{2}} \), we'll calculate the velocity \( v(t) \) as the first derivative, and then the acceleration \( a(t) \) as the second derivative. 1. Differentiate \( s(t) \): \[ v(t) = \frac{ds}{dt} = 2 \cdot \frac{3}{2}(4t + 1)^{\frac{1}{2}} \cdot 4 = 12(4t + 1)^{\frac{1}{2}} \] 2. Now differentiate \( v(t) \) to find \( a(t) \): \[ a(t) = \frac{dv}{dt} = 12 \cdot \frac{1}{2}(4t + 1)^{-\frac{1}{2}} \cdot 4 = 24(4t + 1)^{-\frac{1}{2}} \cdot 4 \] \[ a(t) = \frac{96}{\sqrt{4t + 1}} \] 3. Now evaluate \( a(2) \): \[ a(2) = \frac{96}{\sqrt{4(2) + 1}} = \frac{96}{\sqrt{8 + 1}} = \frac{96}{\sqrt{9}} = \frac{96}{3} = 32 \] So, the answer is: \[ \mathrm{a}(2) = 32 \, \frac{\mathrm{ft}}{\sec^{2}} \]

preguntas relacionadas

Find \( \lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} \sin (1 / x)-(x+2)^{3}\right) \) (if it exists) and give a careful argument showing that your answer is correct. The notation lim the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is, the suppose that \( f \) is a real valued function of a real variable, \( a \) is an accumulation point of the domain of \( f \), and \( \ell, m \in \mathbb{R} \). Prove that if \( f(x) \rightarrow \ell \) as \( x \rightarrow a \) and \( f(x) \rightarrow m \) as \( x \rightarrow a \), then \( l=m \). (Explain carefully why it was important that we require \( a \) to be an accumulation point of the domain of \( f \).) Let \( f(x)=\frac{\sin \pi x}{x+1} \) for all \( x \neq-1 \). The following information is known about a function \( g \) defined for all real numbers \( x \neq 1 \) : (i) \( g=\frac{p}{q} \) where \( p(x)=a x^{2}+b x+c \) and \( q(x)=d x+e \) for some constants \( a, b, c, d, e \); (ii) the only \( x \)-intercept of the curve \( y=g(x) \) occurs at the origin; (iii) \( g(x) \geq 0 \) on the interval \( [0,1) \) and is negative elsewhere on its domain; (iv) \( g \) has a vertical asymptote at \( x=1 \); and (v) \( g(1 / 2)=3 \). Either find lim \( g(x) f(x) \) or else show that this limit does not exist. Hints. Write an explicit formula for \( g \) by determining the constants \( a \ldots e \). Use (ii) to find \( c \); use (ii) and (iii) to find \( a \); use (iv) to find a relationship between \( d \) and \( e \); then use (v) to obtain an explicit form for \( g \). Finally look at \( f(x) g(x) \); replace sin \( \pi x \) by sin( \( (x(x-1)+\pi) \) and use the formula for the sine of the sum of two numbers.

Latest Calculus Questions

Find \( \lim _{x \rightarrow 0^{+}}\left(e^{-1 / x} \sin (1 / x)-(x+2)^{3}\right) \) (if it exists) and give a careful argument showing that your answer is correct. The notation lim the uniqueness of limits. Prove that limits, if they exist, are indeed unique. That is, the suppose that \( f \) is a real valued function of a real variable, \( a \) is an accumulation point of the domain of \( f \), and \( \ell, m \in \mathbb{R} \). Prove that if \( f(x) \rightarrow \ell \) as \( x \rightarrow a \) and \( f(x) \rightarrow m \) as \( x \rightarrow a \), then \( l=m \). (Explain carefully why it was important that we require \( a \) to be an accumulation point of the domain of \( f \).) Let \( f(x)=\frac{\sin \pi x}{x+1} \) for all \( x \neq-1 \). The following information is known about a function \( g \) defined for all real numbers \( x \neq 1 \) : (i) \( g=\frac{p}{q} \) where \( p(x)=a x^{2}+b x+c \) and \( q(x)=d x+e \) for some constants \( a, b, c, d, e \); (ii) the only \( x \)-intercept of the curve \( y=g(x) \) occurs at the origin; (iii) \( g(x) \geq 0 \) on the interval \( [0,1) \) and is negative elsewhere on its domain; (iv) \( g \) has a vertical asymptote at \( x=1 \); and (v) \( g(1 / 2)=3 \). Either find lim \( g(x) f(x) \) or else show that this limit does not exist. Hints. Write an explicit formula for \( g \) by determining the constants \( a \ldots e \). Use (ii) to find \( c \); use (ii) and (iii) to find \( a \); use (iv) to find a relationship between \( d \) and \( e \); then use (v) to obtain an explicit form for \( g \). Finally look at \( f(x) g(x) \); replace sin \( \pi x \) by sin( \( (x(x-1)+\pi) \) and use the formula for the sine of the sum of two numbers.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad