Model the pair of situations with exponential functions \( f \) and \( g \). Find the approximate value of \( x \) that makes \( f(x) \) \( =g(x) \). f. initial value of 700 decreasing at a rate of \( 15 \% \) \( g \) : initial value of 20 increasing at a rate of \( 15 \% \) \( f(x)=700(0.85)^{x} \) (Use integers or decimals for any numbers in the expression.) Write the exponential function for \( g \). \( g(x)=\square \) (Use integers or decimals for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To model the function \( g \), we start with the initial value of 20, which is increasing at a rate of 15%. The exponential function for \( g \) can be expressed as: \( g(x) = 20(1.15)^{x} \) Now you have both functions: \( f(x) = 700(0.85)^{x} \) and \( g(x) = 20(1.15)^{x} \). To find the approximate value of \( x \) that makes \( f(x) = g(x) \), you can set the equations equal to each other: \( 700(0.85)^{x} = 20(1.15)^{x} \). This requires some algebra to isolate \( x \), which will involve taking logarithms to solve for \( x \). Happy calculating!