Pregunta
upstudy study bank question image url

\( \frac{7(x-3)}{x-4}+\frac{5}{x}=\frac{-5}{x(x-4)} \) Solve the following equation by factoring. A. The solution set is \( \{ \). (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There is no solution.

Ask by Dickson Weber. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = -\frac{5}{7} \) and \( x = 3 \).

Solución

Solve the equation \( \frac{7(x-3)}{x-4}+\frac{5}{x}=\frac{-5}{x(x-4)} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{7\left(x-3\right)}{x-4}+\frac{5}{x}=\frac{-5}{x\left(x-4\right)}\) - step1: Find the domain: \(\frac{7\left(x-3\right)}{x-4}+\frac{5}{x}=\frac{-5}{x\left(x-4\right)},x \in \left(-\infty,0\right)\cup \left(0,4\right)\cup \left(4,+\infty\right)\) - step2: Rewrite the fraction: \(\frac{7\left(x-3\right)}{x-4}+\frac{5}{x}=-\frac{5}{x\left(x-4\right)}\) - step3: Multiply both sides of the equation by LCD: \(\left(\frac{7\left(x-3\right)}{x-4}+\frac{5}{x}\right)x\left(x-4\right)=-\frac{5}{x\left(x-4\right)}\times x\left(x-4\right)\) - step4: Simplify the equation: \(7x^{2}-16x-20=-5\) - step5: Move the expression to the left side: \(7x^{2}-16x-20-\left(-5\right)=0\) - step6: Subtract the numbers: \(7x^{2}-16x-15=0\) - step7: Factor the expression: \(\left(x-3\right)\left(7x+5\right)=0\) - step8: Separate into possible cases: \(\begin{align}&x-3=0\\&7x+5=0\end{align}\) - step9: Solve the equation: \(\begin{align}&x=3\\&x=-\frac{5}{7}\end{align}\) - step10: Check if the solution is in the defined range: \(\begin{align}&x=3\\&x=-\frac{5}{7}\end{align},x \in \left(-\infty,0\right)\cup \left(0,4\right)\cup \left(4,+\infty\right)\) - step11: Find the intersection: \(\begin{align}&x=3\\&x=-\frac{5}{7}\end{align}\) - step12: Rewrite: \(x_{1}=-\frac{5}{7},x_{2}=3\) The solution to the equation \( \frac{7(x-3)}{x-4}+\frac{5}{x}=\frac{-5}{x(x-4)} \) is \( x = -\frac{5}{7} \) or \( x = 3 \). Therefore, the solution set is \( \{ -\frac{5}{7}, 3 \} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \frac{7(x-3)}{x-4}+\frac{5}{x}=\frac{-5}{x(x-4)} \), we first find a common denominator, which is \( x(x-4) \). Multiplying through by the common denominator eliminates the fractions: \[ 7(x-3)x + 5(x-4) = -5 \] Next, we distribute and combine like terms: \[ 7x^2 - 21x + 5x - 20 = -5 \] This simplifies to: \[ 7x^2 - 16x - 15 = -5 \] Bringing -5 over gives: \[ 7x^2 - 16x - 10 = 0 \] Now, we can either factor or use the quadratic formula. In this case, we can factor the quadratic: \[ (7x + 5)(x - 2) = 0 \] Setting each factor to zero gives: 1. \( 7x + 5 = 0 \rightarrow x = -\frac{5}{7} \) 2. \( x - 2 = 0 \rightarrow x = 2 \) However, we must check for extraneous solutions by substituting back into the original equation. \( x = -\frac{5}{7} \) does not create any undefined expressions, whereas \( x = 2 \) also checks out without undefined expressions. Hence, the solution set is: A. The solution set is \( \{-\frac{5}{7}, 2\} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad