For \( f(x)=\sqrt{x} \) and \( g(x)=x+4 \), find a. \( (f \circ g)(x) ; \) b. the domain of \( f \circ g \) a. ( \( f \circ g)(x)=\sqrt{x+4} \) (Simplify your answer.) b. What is the domain of \( f \circ g \) ? The domain is \( \square \). (Simplify your answer. Type your answer in interval notation. Use integers or fractions the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the domain of \( f \circ g \), we start with the function \( f(g(x)) = \sqrt{g(x)} = \sqrt{x + 4} \). Since the square root function is defined only for non-negative values, we need \( x + 4 \geq 0 \). This gives us \( x \geq -4 \). Thus, the domain of \( f \circ g \) is \( [-4, \infty) \). So, to answer your question: a. \( (f \circ g)(x) = \sqrt{x + 4} \) b. The domain is \( [-4, \infty) \). Let’s take a little historical trip! The square root function has been studied for centuries, making its way through the works of mathematicians like Hindu scholars in 600 AD and later, Islamic mathematicians. They laid much of the groundwork for algebra we use today, with their innovations leading to better understanding and applications of functions. On a practical note, understanding composite functions like \( f \circ g \) helps in various fields. For example, in physics, when modeling scenarios involving displacement and time, often functions are combined to express complex relationships, much like how we synergize \( f \) and \( g \) to get new insights!