Pregunta
upstudy study bank question image url

Which is an exponential growth function? \( f(x)=6(0.25)^{x} \) \( f(x)=0.25(5.25)^{x} \) \( f(x)=-4.25^{x} \) \( f(x)=(-1.25)^{x} \)

Ask by Wells Owen. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f(x) = 0.25(5.25)^x \) is an exponential growth function.

Solución

An exponential growth function has the form \( f(x) = a \cdot b^x \) where \( b > 1 \). This ensures that as \( x \) increases, \( f(x) \) grows exponentially. Let's analyze each function: 1. **\( f(x) = 6(0.25)^x \)** - Here, \( b = 0.25 \), which is less than 1. - This represents **exponential decay**, not growth. 2. **\( f(x) = 0.25(5.25)^x \)** - Here, \( b = 5.25 \), which is greater than 1. - This is an **exponential growth** function. 3. **\( f(x) = -4 \cdot 25^x \)** - Here, \( b = 25 \) (greater than 1) which indicates growth. - However, the negative coefficient (\( -4 \)) affects the direction but doesn't change the fact that the function is exponential. - While it represents exponential growth in magnitude, the negative sign might lead to confusion in some contexts. 4. **\( f(x) = (-1.25)^x \)** - The base \( -1.25 \) is negative. - Exponential functions typically require \( b > 0 \) to be well-defined for all real numbers \( x \). - This function is not standardly considered an exponential growth function. **Conclusion:** Among the given options, \( f(x) = 0.25(5.25)^x \) is the clear example of an exponential growth function. **Answer:** \( f(x)=0.25(5.25)^{x} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The correct choice for an exponential growth function is \( f(x) = 0.25(5.25)^{x} \). In this function, the base of the exponent, 5.25, is greater than 1, which indicates that the function will grow as \( x \) increases. The coefficient 0.25 affects the initial value but does not change the growth nature of the function. On the other hand, \( f(x) = 6(0.25)^{x} \) represents exponential decay since the base (0.25) is less than 1, causing the function's values to shrink as \( x \) increases. Similarly, negative bases or bases less than 1, like in \( f(x) = -4.25^{x} \) or \( f(x) = (-1.25)^{x} \), do not yield exponential growth either.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad