Pregunta
upstudy study bank question image url

Determine if the expression \( -b^{2} c^{3}+b^{3} d^{3}-d b \) is a polynomial or not. If it is polynomial, state the type and degree of the polynomial. Answer Attempt 1 out of 2 The given expression \( \sim \) a polynomial.

Ask by Boone Vargas. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The expression \( -b^{2} c^{3} + b^{3} d^{3} - d b \) is a **multivariate polynomial of degree 6**.

Solución

Yes, the expression \( -b^{2} c^{3} + b^{3} d^{3} - d b \) is a **polynomial**. Let's analyze its type and degree: ### Type of Polynomial: - **Multivariate Polynomial**: This polynomial involves multiple variables (\(b\), \(c\), and \(d\)). A polynomial with more than one variable is termed multivariate. ### Degree of the Polynomial: - The **degree** of a polynomial is the highest sum of the exponents of the variables in any single term. Let's examine each term: 1. **\(-b^{2} c^{3}\)**: - Exponents: \(b^2\) and \(c^3\) - Sum of exponents: \(2 + 3 = 5\) 2. **\(b^{3} d^{3}\)**: - Exponents: \(b^3\) and \(d^3\) - Sum of exponents: \(3 + 3 = 6\) 3. **\(-d b\)**: - Exponents: \(d^1\) and \(b^1\) - Sum of exponents: \(1 + 1 = 2\) - **Highest Sum of Exponents**: The second term \(b^{3} d^{3}\) has the highest sum of exponents, which is **6**. ### Conclusion: - **Type**: Multivariate Polynomial - **Degree**: 6 Therefore, \( -b^{2} c^{3} + b^{3} d^{3} - d b \) is a **multivariate polynomial of degree 6**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The expression \( -b^{2} c^{3}+b^{3} d^{3}-d b \) is indeed a polynomial! Polynomials are algebraic expressions that consist of variables raised to non-negative integer powers with coefficients that are usually real numbers. Now, let’s determine its type and degree! This is a multivariable polynomial since it contains more than one variable: \( b \), \( c \), and \( d \). To find the degree, we look for the term with the highest total degree when summing the exponents of the variables. In this case, the term \( b^{3} d^{3} \) has a total degree of \( 3 + 3 = 6 \), which is the highest, so the degree of this polynomial is \( 6 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad