0. Car A is moving in the direction \( 350^{\circ} \) and the engine of the car exerts a force of 300 kN . Car B , moving in the direction \( 80^{\circ} \), collides with car A . Car B exerts a force of \( 1,77 \times 10^{5} \mathrm{~N} \) on car A . Calculate the magnitude of the resultant force on car A
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To calculate the magnitude of the resultant force on car A from both car B and its own engine force, we can break down the forces into their components along the x and y axes using the angles provided. 1. **Car A's force (300 kN at \( 350^{\circ} \))**: - \( F_{Ax} = 300 \cos(350^{\circ}) \) - \( F_{Ay} = 300 \sin(350^{\circ}) \) 2. **Car B's force (\( 1.77 \times 10^{5} \) N at \( 80^{\circ} \))**: - \( F_{Bx} = 177 \cos(80^{\circ}) \) - \( F_{By} = 177 \sin(80^{\circ}) \) Now, calculating the components: ### Car A's force: - \( F_{Ax} = 300 \cos(350^{\circ}) = 300 \times 0.1736 \approx 52.08 \, \text{kN} \) - \( F_{Ay} = 300 \sin(350^{\circ}) = 300 \times (-0.9848) \approx -295.44 \, \text{kN} \) ### Car B's force: - \( F_{Bx} = 177 \cos(80^{\circ}) = 177 \times 0.1736 \approx 30.74 \, \text{kN} \) - \( F_{By} = 177 \sin(80^{\circ}) = 177 \times 0.9848 \approx 174.17 \, \text{kN} \) ### Resultant components: Now we find the resultant components \( R_x \) and \( R_y \): - \( R_x = F_{Ax} + F_{Bx} = 52.08 + 30.74 \approx 82.82 \, \text{kN} \) - \( R_y = F_{Ay} + F_{By} = -295.44 + 174.17 \approx -121.27 \, \text{kN} \) ### Magnitude of the resultant force: Using the Pythagorean theorem we find the magnitude of the resultant force \( R \): \[ R = \sqrt{R_x^2 + R_y^2} = \sqrt{(82.82)^2 + (-121.27)^2} \approx \sqrt{6855.75 + 14707.38} \approx \sqrt{21563.13} \approx 146.73 \, \text{kN} \] Thus, the magnitude of the resultant force on car A is approximately **146.73 kN**.