Pregunta
upstudy study bank question image url

0. Car A is moving in the direction \( 350^{\circ} \) and the engine of the car exerts a force of 300 kN . Car B , moving in the direction \( 80^{\circ} \), collides with car A . Car B exerts a force of \( 1,77 \times 10^{5} \mathrm{~N} \) on car A . Calculate the magnitude of the resultant force on car A

Ask by Boyd Potter. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The resultant force on Car A is approximately 348 kN.

Solución

To calculate the magnitude of the resultant force on Car A, we need to consider both the force exerted by the engine and the force exerted by Car B during the collision. Since these forces act in different directions, we'll break them down into their horizontal (x) and vertical (y) components, sum these components, and then determine the resultant vector. ### Given: 1. **Engine Force (\( \mathbf{F}_1 \))**: - Magnitude: 300 kN = \( 3.00 \times 10^5 \) N - Direction: \( 350^{\circ} \) 2. **Collision Force (\( \mathbf{F}_2 \))**: - Magnitude: \( 1.77 \times 10^5 \) N - Direction: \( 80^{\circ} \) ### Step 1: Break Down Forces into Components **For \( \mathbf{F}_1 \) (350°):** - \( F_{1x} = F_1 \cos(350^\circ) \) - \( F_{1y} = F_1 \sin(350^\circ) \) Using: - \( \cos(350^\circ) \approx 0.98480775 \) - \( \sin(350^\circ) \approx -0.17364818 \) Calculations: - \( F_{1x} = 3.00 \times 10^5 \times 0.98480775 \approx 295,442 \) N - \( F_{1y} = 3.00 \times 10^5 \times (-0.17364818) \approx -52,094 \) N **For \( \mathbf{F}_2 \) (80°):** - \( F_{2x} = F_2 \cos(80^\circ) \) - \( F_{2y} = F_2 \sin(80^\circ) \) Using: - \( \cos(80^\circ) \approx 0.17364818 \) - \( \sin(80^\circ) \approx 0.98480775 \) Calculations: - \( F_{2x} = 1.77 \times 10^5 \times 0.17364818 \approx 30,727 \) N - \( F_{2y} = 1.77 \times 10^5 \times 0.98480775 \approx 174,757 \) N ### Step 2: Sum the Components - **Total Horizontal Component (\( F_{x} \))**: \[ F_x = F_{1x} + F_{2x} = 295,442 \, \text{N} + 30,727 \, \text{N} = 326,169 \, \text{N} \] - **Total Vertical Component (\( F_{y} \))**: \[ F_y = F_{1y} + F_{2y} = -52,094 \, \text{N} + 174,757 \, \text{N} = 122,663 \, \text{N} \] ### Step 3: Calculate the Magnitude of the Resultant Force Using the Pythagorean theorem: \[ |\mathbf{F}_{\text{resultant}}| = \sqrt{F_x^2 + F_y^2} \] \[ |\mathbf{F}_{\text{resultant}}| = \sqrt{(326,169)^2 + (122,663)^2} \] \[ |\mathbf{F}_{\text{resultant}}| \approx \sqrt{1.0637 \times 10^{11} + 1.5032 \times 10^{10}} = \sqrt{1.2140 \times 10^{11}} \approx 348,365 \, \text{N} \] ### Conclusion The magnitude of the resultant force on Car A is approximately **348 kN**. **Final Answer:** The resultant force on Car A has a magnitude of approximately 348 kN.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the magnitude of the resultant force on car A from both car B and its own engine force, we can break down the forces into their components along the x and y axes using the angles provided. 1. **Car A's force (300 kN at \( 350^{\circ} \))**: - \( F_{Ax} = 300 \cos(350^{\circ}) \) - \( F_{Ay} = 300 \sin(350^{\circ}) \) 2. **Car B's force (\( 1.77 \times 10^{5} \) N at \( 80^{\circ} \))**: - \( F_{Bx} = 177 \cos(80^{\circ}) \) - \( F_{By} = 177 \sin(80^{\circ}) \) Now, calculating the components: ### Car A's force: - \( F_{Ax} = 300 \cos(350^{\circ}) = 300 \times 0.1736 \approx 52.08 \, \text{kN} \) - \( F_{Ay} = 300 \sin(350^{\circ}) = 300 \times (-0.9848) \approx -295.44 \, \text{kN} \) ### Car B's force: - \( F_{Bx} = 177 \cos(80^{\circ}) = 177 \times 0.1736 \approx 30.74 \, \text{kN} \) - \( F_{By} = 177 \sin(80^{\circ}) = 177 \times 0.9848 \approx 174.17 \, \text{kN} \) ### Resultant components: Now we find the resultant components \( R_x \) and \( R_y \): - \( R_x = F_{Ax} + F_{Bx} = 52.08 + 30.74 \approx 82.82 \, \text{kN} \) - \( R_y = F_{Ay} + F_{By} = -295.44 + 174.17 \approx -121.27 \, \text{kN} \) ### Magnitude of the resultant force: Using the Pythagorean theorem we find the magnitude of the resultant force \( R \): \[ R = \sqrt{R_x^2 + R_y^2} = \sqrt{(82.82)^2 + (-121.27)^2} \approx \sqrt{6855.75 + 14707.38} \approx \sqrt{21563.13} \approx 146.73 \, \text{kN} \] Thus, the magnitude of the resultant force on car A is approximately **146.73 kN**.

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad