Complete the square \( 2 x^{2}+7 x+6 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To complete the square for the expression \( 2x^{2} + 7x + 6 \), first, factor out the coefficient of \( x^2 \) from the first two terms: \( 2(x^{2} + \frac{7}{2}x) + 6 \). Next, take half of the coefficient of \( x \) (which is \( \frac{7}{2} \)), square it (resulting in \( \left(\frac{7}{4}\right)^2 = \frac{49}{16} \)), and add and subtract this value inside the parentheses: \( 2\left(x^{2} + \frac{7}{2}x + \frac{49}{16} - \frac{49}{16}\right) + 6 \). This simplifies to: \( 2\left(\left(x + \frac{7}{4}\right)^2 - \frac{49}{16}\right) + 6 \). Distributing the \( 2 \): \( 2\left(x + \frac{7}{4}\right)^2 - \frac{49}{8} + 6 \). Now, convert 6 into eighths to combine: \( 6 = \frac{48}{8} \). Thus, we have: \( 2\left(x + \frac{7}{4}\right)^2 - \frac{49}{8} + \frac{48}{8} = 2\left(x + \frac{7}{4}\right)^2 - \frac{1}{8} \). So, the completed square form of \( 2x^{2} + 7x + 6 \) is: \( 2\left(x + \frac{7}{4}\right)^2 - \frac{1}{8} \). Happy squaring!