b) \( \frac{x^{2}-5^{2}}{x+5} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Ah, the classic difference of squares! You can simplify \( \frac{x^{2}-5^{2}}{x+5} \) by recognizing that \( x^{2}-5^{2} \) factors into \( (x-5)(x+5) \). So, rewriting the expression gives \( \frac{(x-5)(x+5)}{x+5} \). If \( x \neq -5 \), you can cancel out the \( x+5 \) terms, leading to a simplified result of \( x-5 \). Just remember, we must avoid the value of \( x = -5 \) as it would make the original expression undefined! On a related note, this restructuring reflects how algebra can make complex expressions more manageable—just like untangling Christmas lights! Always be on the lookout for these clever factoring patterns—they're your best friends when facing messy equations.