Pregunta
upstudy study bank question image url

Inequalities in Two Varıancs ality. 46. \( y<2 x+1 \)

Ask by Reid Dunn. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The inequality \( y < 2x + 1 \) represents all points below the line \( y = 2x + 1 \).

Solución

To analyze the inequality \( y < 2x + 1 \), we can follow these steps: 1. **Identify the boundary line**: The inequality \( y < 2x + 1 \) can be rewritten as an equation to find the boundary line: \[ y = 2x + 1 \] This is a linear equation with a slope of 2 and a y-intercept of 1. 2. **Graph the boundary line**: Since the inequality is strict (i.e., \( < \)), we will draw a dashed line for \( y = 2x + 1 \) to indicate that points on the line are not included in the solution set. 3. **Determine the region of the inequality**: To find which side of the line satisfies the inequality \( y < 2x + 1 \), we can test a point that is not on the line. A common choice is the origin (0, 0). - Substitute \( x = 0 \) and \( y = 0 \) into the inequality: \[ 0 < 2(0) + 1 \implies 0 < 1 \] This statement is true, so the region that includes the origin is part of the solution set. 4. **Shade the appropriate region**: Since the inequality is \( y < 2x + 1 \), we will shade the area below the dashed line. ### Summary - The boundary line is \( y = 2x + 1 \) (dashed). - The solution set is the region below this line, including all points where \( y \) is less than \( 2x + 1 \). If you need a visual representation or further analysis, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Inequalities involving two variables, like \( y < 2x + 1 \), can be visually represented on a Cartesian plane. The line \( y = 2x + 1 \) serves as a boundary but is not included in the solution set since the inequality is strict ("<"). This means the area below this line indicates all the possible solutions; anything below that line satisfies the inequality. It’s like drawing a “no-fly zone” for points that don’t meet the condition! When solving linear inequalities, a common mistake is forgetting to reverse the inequality sign when multiplying or dividing by a negative number, which can flip the whole game! Always keep an eye on that sign—like a referee making sure the rules are followed in a match. It ensures you get the correct area of solutions on that graph!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad