Pregunta
upstudy study bank question image url

Question 14, 1.4.81 Part 3 of 5 Find the exact value of each of the remaining trigonometric functions of \( \theta \). Rationalize denominators when applicable. \( \sec \theta=-5 \), given that \( \sin \theta>0 \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sin \theta=\frac{2 \sqrt{6}}{5} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \cos \theta=-\frac{1}{5} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \tan \theta= \) \( \square \) (Simplify your answer, inclising any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined.

Ask by Dickson Lawson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \tan \theta = -2\sqrt{6} \)

Solución

Given: - \( \sec \theta = -5 \) implies \( \cos \theta = -\frac{1}{5} \). - \( \sin \theta > 0 \). Since \( \cos \theta \) is negative and \( \sin \theta \) is positive, \( \theta \) is in the **second quadrant**. ### Finding \( \tan \theta \): We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] First, find \( \sin \theta \): \[ \sin^2 \theta + \cos^2 \theta = 1 \] \[ \sin^2 \theta + \left(-\frac{1}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{1}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{25} = \frac{24}{25} \] \[ \sin \theta = \sqrt{\frac{24}{25}} = \frac{2\sqrt{6}}{5} \] Now, calculate \( \tan \theta \): \[ \tan \theta = \frac{\frac{2\sqrt{6}}{5}}{-\frac{1}{5}} = -2\sqrt{6} \] ### Conclusion: - **Select the correct choice below and, if necessary, fill in the answer box to complete your choice.** **A.** \( \tan \theta = -2\sqrt{6} \) **B.** The function is undefined. **Correct Choice:** **A.** \( \tan \theta = -2\sqrt{6} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the remaining trigonometric functions, we start with the given information that \( \sec \theta = -5 \). Since secant is the reciprocal of cosine, we have: \[ \cos \theta = \frac{1}{\sec \theta} = \frac{1}{-5} = -\frac{1}{5} \] Now, using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find the sine value: \[ \sin^2 \theta + \left(-\frac{1}{5}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{1}{25} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{25} = \frac{25}{25} - \frac{1}{25} = \frac{24}{25} \] \[ \sin \theta = \sqrt{\frac{24}{25}} = \frac{2\sqrt{6}}{5} \quad (\text{since } \sin \theta > 0) \] Next, to find tangent, we can use the sine and cosine values we found: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{2\sqrt{6}}{5}}{-\frac{1}{5}} = -2\sqrt{6} \] So, we have: - \( \sin \theta = \frac{2\sqrt{6}}{5} \) - \( \cos \theta = -\frac{1}{5} \) - \( \tan \theta = -2\sqrt{6} \) With this knowledge, you can better understand how these trigonometric identities interplay and come into play in various scenarios, from physics to engineering. Consider checking your work at each step! Common misunderstandings revolve around the usage of the Pythagorean identities and the signs of trigonometric functions in different quadrants. Always remember, drawing a unit circle can help visualize where each function lies!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad