1) Prove the Following: a.) \( \operatorname{si} 2^{x}-2^{x+2}=2 x \) b.) \( 2^{2 x+1}+4^{x+1}=2^{2 x}\left(\frac{9}{2}\right) \) (i) \( 2^{x+3^{x+2}-2^{x+2}=2^{x+x}} \) d.) \( 4^{2-x}=\frac{21}{3^{x}} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To effectively approach proving each expression, let's review some helpful tips and remember common mistakes. Many students overlook the power of simplifying expressions step-by-step, which can lead them down a convoluted path. For instance, when dealing with exponents, remember that \( a^{m+n} = a^m \cdot a^n \). By re-organizing terms systematically, you can unravel complex equations easily. For real-world application, understanding how exponents work is crucial, especially in fields like computer science, finance, and physics. Whether you're calculating compound interest, binary tree height in algorithms, or energy in physical systems, mastering exponent rules will illuminate the path and boost your confidence in numerical challenges ahead!