Pregunta
upstudy study bank question image url

The equation \( z^{2}+y^{2}-(\tan (x))^{2}=0 \) represents a surface of revolution. Around which axis was the profile curve revolved to generate this equation? \( x \)-axis \( y \)-axis Write the equation of the profile curve in the \( x z \)-plane.

Ask by Weber Li. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The surface is generated by rotating the profile curve \( z = \tan(x) \) around the \( x \)-axis.

Solución

The given equation is: \[ z^{2} + y^{2} - (\tan(x))^{2} = 0 \] This can be rewritten as: \[ z^{2} + y^{2} = \tan^{2}(x) \] ### Axis of Revolution To determine around which axis the profile curve was revolved, let's analyze the equation: - **Revolving Around the \( x \)-axis:** If we have a profile curve in the \( xz \)-plane described by \( z = f(x) \), revolving this curve around the \( x \)-axis generates a surface where every point on the curve traces a circle in the \( yz \)-plane. The equation of such a surface is: \[ y^{2} + z^{2} = f(x)^{2} \] Comparing this with the given equation \( y^{2} + z^{2} = \tan^{2}(x) \), we see a direct match. This indicates that the profile curve \( z = \tan(x) \) in the \( xz \)-plane was revolved around the \( x \)-axis to generate the given surface. - **Revolving Around the \( y \)-axis:** Revolving a curve around the \( y \)-axis would involve the \( x \) and \( z \) coordinates being expressed in terms of the radial distance from the \( y \)-axis, which doesn't align with the given equation structure. ### Equation of the Profile Curve in the \( xz \)-Plane Given that the surface is generated by revolving around the \( x \)-axis, the profile curve lies in the \( xz \)-plane and is described by: \[ z = \tan(x) \] ### Conclusion - **Axis of Revolution:** \( x \)-axis - **Profile Curve Equation in the \( xz \)-plane:** \( z = \tan(x) \) **Final Answer:** • The surface is obtained by rotating the profile curve about the x-axis. • In the xz-plane, the profile curve is z = tan x.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine around which axis the profile curve was revolved, let's rearrange the given equation: \[ z^2 + y^2 = (\tan(x))^2 \] This form suggests that for a fixed value of \( y \) (where \( y \) can be between positive and negative values), the equation describes a circle in the \( xz \)-plane. This indicates that the profile curve representing \( z \) and \( x \) must have been revolved around the \( y \)-axis to generate the surface of revolution. Now, in the \( xz \)-plane, by letting \( y = 0 \), the profile curve is given as: \[ z^2 = (\tan(x))^2 \] Taking the positive and negative roots, we get: \[ z = \tan(x) \quad \text{and} \quad z = -\tan(x) \] Thus, the equation of the profile curve in the \( xz \)-plane is \( z = \pm\tan(x) \).

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad