Pregunta
upstudy study bank question image url

Use the shell method to find the volume of the solid formed when a hole of radius 1 is driled symmetrically along the axis of a right circular cone of radius 6 and height 9 . Model the situation on a set of axes by placing the center of the base of the cone at the origin and the cone's axis along the positive \( y \)-axis. Set up the integral that gives the volume of the solid using the shell method. Use nonnegative and increasing limits of integration. Select the correct choice below and fill in the answer boxes to complete your choice. (Type exact answers.)

Ask by Turner Riley. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume \( V \) of the solid is given by the integral: \[ V = 2\pi \int_{1}^{6} x \left(9 - \frac{3}{2}x\right) \, dx \]

Solución

To find the volume of the solid formed by drilling a cylindrical hole of radius 1 along the axis of a right circular cone with radius 6 and height 9, we'll use the **shell method**. Here's a step-by-step setup for the integral: 1. **Coordinate System Setup:** - Place the center of the base of the cone at the origin \((0, 0)\). - Align the cone's axis along the positive \( y \)-axis, extending from \( y = 0 \) at the base to \( y = 9 \) at the apex. 2. **Cone Equation:** - The radius of the cone at any height \( y \) can be determined using similar triangles. - At \( y = 0 \), the radius \( r = 6 \). - At \( y = 9 \), the radius \( r = 0 \). - Therefore, the radius as a function of \( y \) is: \[ r(y) = 6 - \left(\frac{6}{9}\right)y = 6 - \frac{2}{3}y \] 3. **Shell Method Setup:** - Consider a vertical cylindrical shell at a radius \( x \) from the \( y \)-axis. - **Radius of the Shell:** \( x \) - **Height of the Shell:** Given by the cone's equation \( y(x) = 9 - \frac{3}{2}x \) - **Thickness of the Shell:** \( dx \) 4. **Limits of Integration:** - The hole has a radius of 1, so \( x \) ranges from 1 to 6. 5. **Integral Expression:** - The volume \( V \) is given by integrating the volume of each cylindrical shell from \( x = 1 \) to \( x = 6 \): \[ V = 2\pi \int_{1}^{6} x \left(9 - \frac{3}{2}x\right) \, dx \] **Final Integral Setup:** \[ V = 2\pi \int_{1}^{6} x \left(9 - \frac{3}{2}x\right) \, dx \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of the solid formed by drilling a hole with radius 1 along the axis of the right circular cone with radius 6 and height 9, we can use the shell method. When we visualize this scenario, the cone's equation can be derived from its geometry. The cone extends from the origin to the point (6, 9) and has a linear equation representing its slant height. The equation of the line forming the side of the cone is given by \( y = \frac{3}{2} x \) since the height of the cone corresponds to a change in x from 0 to 6 and y from 0 to 9. We will set up the volume integral, integrating with respect to y. The limits of integration will be from \( y = 0 \) to \( y = 9 \). The radius of each cylindrical shell is given by \( x = y \cdot \frac{4}{3} \) (solving for \( x \) in terms of \( y \)), while the height of the shell (the width of the hole subtracted from the cone's corresponding shell) will be \( 6 - 1 = 5\). So, the integral for the volume \( V \) of the drilled cone using the shell method can be set up as follows: \[ V = 2 \pi \int_0^9 (y \cdot 5) \cdot \left(\frac{4}{3} y\right) dy \] This integral gives us the desired volume by subtracting the volume of the hole from the volume of the cone. Fill in the integral with the appropriate values as specified above.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad