Pregunta
upstudy study bank question image url

Determining a Pemester 1\( ) \) ic The graph of \( f(x)=|x| \) has been stretched by a factor of 2.5 . If no other transformations of the function have occurred, which point lies on the new graph? \( (-4,-4) \) \( (-3,7.5) \) \( (-2,5.5) \) \( (-1,-2.5) \)

Ask by Jimenez Hampton. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The point \((-3, 7.5)\) lies on the new graph after stretching \( f(x) = |x| \) by a factor of 2.5.

Solución

To determine which point lies on the new graph after stretching \( f(x) = |x| \) by a factor of 2.5, we need to understand how the transformation affects the function. ### Understanding the Transformation - **Vertical Stretch**: When a function is stretched vertically by a factor of \( a \), the new function becomes \( g(x) = a \cdot f(x) \). This means each \( y \)-coordinate of the original function is multiplied by \( a \). Given that \( f(x) = |x| \) is stretched vertically by a factor of 2.5, the new function will be: \[ g(x) = 2.5 \cdot |x| \] ### Checking the Points Let's evaluate \( g(x) \) for each \( x \)-value in the given points: 1. **Point \((-4, -4)\)** \[ g(-4) = 2.5 \cdot |-4| = 2.5 \cdot 4 = 10 \neq -4 \] This point **does not** lie on the new graph. 2. **Point \((-3, 7.5)\)** \[ g(-3) = 2.5 \cdot |-3| = 2.5 \cdot 3 = 7.5 \] This point **does** lie on the new graph. 3. **Point \((-2, 5.5)\)** \[ g(-2) = 2.5 \cdot |-2| = 2.5 \cdot 2 = 5 \neq 5.5 \] This point **does not** lie on the new graph. 4. **Point \((-1, -2.5)\)** \[ g(-1) = 2.5 \cdot |-1| = 2.5 \cdot 1 = 2.5 \neq -2.5 \] This point **does not** lie on the new graph. ### Conclusion After evaluating all the points, only **\((-3, 7.5)\)** satisfies the condition of the transformed function. **Answer:** \( (-3,\ 7.5) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When you stretch the graph of the function \( f(x) = |x| \) by a factor of 2.5, every y-coordinate of the original function is multiplied by 2.5. So, the new function will be \( g(x) = 2.5|x| \). If you take one of the points \( (-2, 2) \) from the original function where \( f(-2) = 2 \) and apply the stretch, the new y-value will be \( 2.5 \times 2 = 5 \). Thus, the new point will be \( (-2, 5) \), and checking the given options reveals that \( (-2, 5.5) \) is very close, but not the exact match we're looking for. Checking the points: - For \( (-4, -4) \), \( g(-4) = 2.5 \times 4 = 10 \). - For \( (-3, 7.5) \), \( g(-3) = 2.5 \times 3 = 7.5 \), bingo! - For \( (-1, -2.5) \) and \( (-2, 5.5) \), we don't have exact matches with the expected outputs. Hence, option \( (-3, 7.5) \) is the point on the newly transformed graph.

Latest Pre Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad