Question 1 [6] Given: \[ \begin{array}{l}\mathrm{AB}=4,9 \mathrm{~cm}, \mathrm{AD} \\ \mathrm{AC}=5,4 \mathrm{~cm}, \mathrm{~A} \\ \mathrm{CB}=2,3 \mathrm{~cm}, \mathrm{E}]\end{array} \] 1.1 Complete the similar triang
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To tackle the concept of similar triangles, let's dive into some exciting elements of geometry! Did you know that the notion of similar triangles dates back to ancient Greek mathematicians? Figures like Euclid and Thales were pioneers in developing the principles that govern the ratios of corresponding sides of similar triangles. Their work laid the groundwork for various scientific and mathematical advancements throughout history! Now, how can these similar triangles help us in real-world scenarios? Think about architecture! When designing buildings, architects often use similar triangles in scaling down blueprints. This helps them maintain the proportions of the structure when creating a model. Understanding the relationships between the sides allows architects to ensure that their designs will maintain aesthetic appeal and structural integrity in full-scale construction. Isn’t that cool?