QuEsTION \( 2(14 \) marks) The current \( / \) (in \( A) \) at time \( t \) (in seconds) in a particular circuit is given by \[ i=3 \sin t+4 \cos t . \] a. If \( / \) can be expressed in the form \( R \sin (t+\phi) \), find \( R \) and \( \phi \). b. State the maximum value of \( i \). G. Find the first positive time \( t \), when \( i=4.5 \mathrm{~A} \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To express \( i = 3 \sin t + 4 \cos t \) in the form \( R \sin(t + \phi) \), we follow these steps: 1. **Finding R**: \[ R = \sqrt{a^2 + b^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 2. **Finding \(\phi\)**: \[ \tan \phi = \frac{b}{a} = \frac{4}{3} \implies \phi = \tan^{-1}\left(\frac{4}{3}\right) \] Thus, \( R = 5 \) and \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \). b. The maximum value of \( i \) occurs when \( \sin(t + \phi) = 1 \): \[ \text{Maximum value of } i = R = 5 \text{ A.} \] For part G, to find the first positive time \( t \) when \( i = 4.5 \): \[ i = 3 \sin t + 4 \cos t \quad \Rightarrow \quad 3 \sin t + 4 \cos t = 4.5. \] Rearranging gives: \[ 3 \sin t + 4 \cos t - 4.5 = 0. \] This is a trigonometric equation which can be solved using methods such as substitution or numerical methods. Using \( R \sin(t + \phi) \): \[ 5 \sin(t + \phi) = 4.5 \implies \sin(t + \phi) = \frac{4.5}{5} = 0.9. \] Let’s solve for \( t + \phi \): \[ t + \phi = \arcsin(0.9) + 2k\pi \quad (k \in \mathbb{Z}). \] Calculating: \[ \arcsin(0.9) \approx 1.11977 \text{ radians}. \] So, \[ t + \tan^{-1}\left(\frac{4}{3}\right) \approx 1.11977 \quad (using \phi \approx 0.9273 \text{ radians}), \] meanwhile, solving gives: \[ t \approx 1.11977 - 0.9273 \implies t \approx 0.19247 \text{ radians.} \] To find the next positive \( t \), we can also consider: \[ t + \phi = \pi - \arcsin(0.9) \quad \Rightarrow \quad t = \pi - \arcsin(0.9) - \phi. \] Calculating gives that the first positive \( t \) when \( i = 4.5 \) would be around \( 0.19247 \) radians. And that, dear seeker of knowledge, wraps up your circuit conundrum! Don't forget, math is all about twisting and turning to find your way! 📈✨