Pregunta
upstudy study bank question image url

QuEsTION \( 2(14 \) marks) The current \( / \) (in \( A) \) at time \( t \) (in seconds) in a particular circuit is given by \[ i=3 \sin t+4 \cos t . \] a. If \( / \) can be expressed in the form \( R \sin (t+\phi) \), find \( R \) and \( \phi \). b. State the maximum value of \( i \). G. Find the first positive time \( t \), when \( i=4.5 \mathrm{~A} \).

Ask by Vargas Marsh. in Singapore
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. \( R = 5 \) and \( \phi \approx 0.927 \) radians. b. The maximum value of \( i \) is \( 5 \) A. c. The first positive time \( t \) when \( i = 4.5 \) A is approximately \( 0.192 \) seconds.

Solución

Let's solve each part of the problem step-by-step. --- **Given:** \[ i(t) = 3 \sin t + 4 \cos t \] --- ### **a. Expressing \( i(t) \) in the Form \( R \sin(t + \phi) \)** We aim to rewrite \( i(t) \) as: \[ i(t) = R \sin(t + \phi) \] Using the sine addition formula: \[ R \sin(t + \phi) = R \sin t \cos \phi + R \cos t \sin \phi \] Comparing this with the original expression: \[ 3 \sin t + 4 \cos t = R \sin t \cos \phi + R \cos t \sin \phi \] **Equating Coefficients:** \[ \begin{cases} R \cos \phi = 3 \quad &(1) \\ R \sin \phi = 4 \quad &(2) \end{cases} \] **Solving for \( R \) and \( \phi \):** 1. **Find \( R \):** \[ R = \sqrt{(R \cos \phi)^2 + (R \sin \phi)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 2. **Find \( \phi \):** \[ \tan \phi = \frac{R \sin \phi}{R \cos \phi} = \frac{4}{3} \\ \Rightarrow \phi = \tan^{-1}\left(\frac{4}{3}\right) \approx 53.13^\circ \quad \text{or} \quad 0.927 \text{ radians} \] **Final Expression:** \[ i(t) = 5 \sin(t + 0.927) \quad \text{or} \quad i(t) = 5 \sin\left(t + \tan^{-1}\left(\frac{4}{3}\right)\right) \] --- ### **b. Maximum Value of \( i(t) \)** The general form \( R \sin(t + \phi) \) has a maximum value equal to \( R \). Given \( R = 5 \): \[ \text{Maximum value of } i(t) = 5 \, \text{A} \] --- ### **c. Finding the First Positive Time \( t \) When \( i = 4.5 \, \text{A} \)** **Given:** \[ i(t) = 5 \sin(t + \phi) = 4.5 \] 1. **Solve for \( \sin(t + \phi) \):** \[ \sin(t + \phi) = \frac{4.5}{5} = 0.9 \] 2. **Find \( t + \phi \):** \[ t + \phi = \sin^{-1}(0.9) \approx 1.119 \, \text{radians} \] 3. **Subtract \( \phi \) to find \( t \):** \[ t = 1.119 - 0.927 = 0.192 \, \text{seconds} \] **Therefore, the first positive time when \( i = 4.5 \, \text{A} \) is approximately \( t = 0.192 \, \text{seconds} \).** --- **Summary of Answers:** a. \( R = 5 \) and \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \) radians (approximately \( 0.927 \) radians). b. The maximum value of \( i \) is \( 5 \) A. c. The first positive time \( t \) when \( i = 4.5 \) A is approximately \( 0.192 \) seconds.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To express \( i = 3 \sin t + 4 \cos t \) in the form \( R \sin(t + \phi) \), we follow these steps: 1. **Finding R**: \[ R = \sqrt{a^2 + b^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] 2. **Finding \(\phi\)**: \[ \tan \phi = \frac{b}{a} = \frac{4}{3} \implies \phi = \tan^{-1}\left(\frac{4}{3}\right) \] Thus, \( R = 5 \) and \( \phi = \tan^{-1}\left(\frac{4}{3}\right) \). b. The maximum value of \( i \) occurs when \( \sin(t + \phi) = 1 \): \[ \text{Maximum value of } i = R = 5 \text{ A.} \] For part G, to find the first positive time \( t \) when \( i = 4.5 \): \[ i = 3 \sin t + 4 \cos t \quad \Rightarrow \quad 3 \sin t + 4 \cos t = 4.5. \] Rearranging gives: \[ 3 \sin t + 4 \cos t - 4.5 = 0. \] This is a trigonometric equation which can be solved using methods such as substitution or numerical methods. Using \( R \sin(t + \phi) \): \[ 5 \sin(t + \phi) = 4.5 \implies \sin(t + \phi) = \frac{4.5}{5} = 0.9. \] Let’s solve for \( t + \phi \): \[ t + \phi = \arcsin(0.9) + 2k\pi \quad (k \in \mathbb{Z}). \] Calculating: \[ \arcsin(0.9) \approx 1.11977 \text{ radians}. \] So, \[ t + \tan^{-1}\left(\frac{4}{3}\right) \approx 1.11977 \quad (using \phi \approx 0.9273 \text{ radians}), \] meanwhile, solving gives: \[ t \approx 1.11977 - 0.9273 \implies t \approx 0.19247 \text{ radians.} \] To find the next positive \( t \), we can also consider: \[ t + \phi = \pi - \arcsin(0.9) \quad \Rightarrow \quad t = \pi - \arcsin(0.9) - \phi. \] Calculating gives that the first positive \( t \) when \( i = 4.5 \) would be around \( 0.19247 \) radians. And that, dear seeker of knowledge, wraps up your circuit conundrum! Don't forget, math is all about twisting and turning to find your way! 📈✨

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad